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Abstract

The repo market crash was a catalyst for the great recession in 2008-2009.
I evaluate the quantitative importance of the following three factors in
that crash: a drop in the price of residential mortgage-backed securities
(RMBS), the liquidity drying up caused by asymmetric information in
the RMBS market, and the run by repo lenders induced by changes in the
fundamentals. On the theoretical side, the main contribution is to con-
struct a tractable and parsimonious model to integrate the RMBS market
with asymmetric information and the repo market with strategic comple-
mentary lenders. The two markets are connected by buyers in the RMBS
market who use RMBS as collateral for borrowing in the repo market. I
characterize the stochastic equilibrium of the economy where the quality
of RMBS follows a Markov process. With calibration and simulation, the
model yields the following quantitative results. First, the liquidity drying
up caused by asymmetric information plays a crucial role in every aspect
of the repo market crash. It explains 30% of the increase in haircut, 13%
of the drop in total repo outstanding, and a large part of the increase in
repo spread. Second, throughout the crisis, the fundamental-based run
significantly affects the repo rate but only has a small effect on the repo
haircut. Third, in addition to the three factors, the general equilibrium
effect generated from the interactions between the RMBS market and the
repo market explains 33% of the drop in total repo outstanding. I discuss
the policy implications of these findings.
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Comments and suggestions are welcome. Email: wxq7@psu.edu
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1 Introduction

Marked by the largest bankruptcy filing in U.S. history, Lehman Brothers failed
to roll over billions of dollars on the repo market1 because of its significant ex-
posures to the residential mortgage-backed securities (RMBS).2 The Lehman
Brothers’ failure offered a vivid example, in miniatures, of how do interactions
between the RMBS market and the repo market drive the insolvency of the
wholesale banking sector, which led to the Great Recession.3 This paper con-
structs an equilibrium model to capture those interactions. The goal is to use
the model to quantitatively evaluate contributions of three factors (described
below) that are commonly believed to be important for the repo market crash.
I also explore the policy implications of findings from the quantification exer-
cise.

Three factors are proposed to explain the repo market crash: the price
factor, the liquidity factor, and the (fundamental-based) run factor. Each of
them is rooted in the institutional details of the repo market. First, notice that
a significant portion of collateral assets used in the repo contract are RMBS,4

of which the security design makes their return very sensitive to the housing
price fluctuation. Observing the unprecedented housing price decline in 2007,
repo lenders may be worried about the qualities/prices of their collateral as-
sets and withdrawal cash from the repo market. I will call it the price factor
in the following. Second, the repo market crash may also be triggered by repo
lenders’ concern about the liquidity of RMBS. It is because RMBS are very
complicated structural financial products. The complicity generates asymmet-
ric information between RMBS sellers and buyers when its fundamentals keep
changing (e.g., the default probability of the subprime mortgages), which po-
tentially impedes liquidity. In the rest of the paper, this factor will be referred
to as the liquidity factor. Third, the repo market crash may be a consequence
of the maturity mismatch between repo borrowers’ long-term investment in
RMBS and short-term repo liability, making them particularly vulnerable to
runs by repo lenders. I will exclusively focus on the “fundamental-based run”
instead of the “panic-based run” since “panics” is impossible to measure and

1Repo market is a short-term collateralized borrowing market mainly participated by
dealer banks and cash-rich institutions like money market funds. The appendix A contains a
brief review of institutional backgrounds and financial terminologies used in the paper.

2See the detailed case study by Wiggins et al. (2014).
3For example, see Gorton and Metrick (2012) and Brunnermeier (2009).
4In this paper, I mainly focus on the bilateral repo market that is associated with the

private-labeled RMBS as collaterals. As suggested in Gorton and Metrick (2012), this is the
part of the repo market that is considered as the culprit of the Great Financial Crisis.
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quantify. I delay the detailed discussion of this choice to the literature section.
I denote the (fundamental-based) run as the run factor. This paper evaluates
the quantitative importance of the price, the liquidity, and the run factor in the
repo market crash.

The RMBS market and the repo market are tightly connected. Buyers in
the RMBS market use previously purchased RMBS as collateral for borrowing
in the repo market. Therefore, decoupling the three factors is a challenging
task. They are inevitably interwoven with each other. First of all, prices and
liquidities of RMBS are typically simultaneously determined on the market.
Therefore, the price factor naturally correlates with the liquidity factor. Sec-
ondly, regulated by accounting rules, collateral assets are marked to market.
When repo lenders decide whether to run the repo borrower or not, they will
consider the liquidation values of their collateral portfolio. Thus all three fac-
tors are dependent on each other. Thirdly, all three factors may correlate across
time because of the endogenous evolution of repo borrowers’ balance sheets
and budgets. Given the limited data availability of repo market transactions,
it is impossible to account for these endogeneities and decompose the three
factors from each other without a structural model.

Unfortunately, to the best of my knowledge, a suitable model for answer-
ing my research question does not exist in the literature. The difficulties are
the following. Capturing the price factor implies the model must be stochas-
tic. Asymmetric information friction, the key to the liquidity factor, requires
the model to include heterogeneity in the RMBS market. And the run factor
calls for tracking the dynamics of a repo borrower’s balance sheet. It is well
known that a dynamic stochastic model with heterogeneity is hardly tractable.
So on the theoretical side, the contribution of this paper is that I construct a
parsimonious model which nests the price factor, the liquidity factor, and the
run factor under a unified framework and tracks their interactions. I propose
a simple concept of equilibrium and characterize its properties.

In my model, there are three agents: sellers, buyers, and lenders. They in-
teract in two markets: sellers and buyers trade assets in the asset market, and
buyers borrow cash from lenders in the repo market. There are multiple types
of assets ordered by their qualities. I assume that the quality of the lowest type
asset follows a Markov chain, which comes from housing price fluctuations.
The stochastic quality changes capture the price factor. Furthermore, I as-
sume asset types are only observable to sellers, addressing the liquidity factor
caused by the asymmetric information friction. The asset market is modeled
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á la a stochastic version of Guerrieri and Shimer (2014). Given buyers’ bud-
get, prices and liquidities of all types of assets are endogenously determined
in the equilibrium. In the repo market, buyers propose take-it or leave-it repo
contracts to lenders, and all lenders simultaneously choose between the repo
contract and exogenous heterogeneous outside options. Two conditions con-
strain repo contracts. (1) Buyers cannot promise more asset collateral than
their available asset holdings, and (2) the liquidation value of collateral port-
folios, evaluated by the equilibrium price and liquidity on the asset market,
must exceed the face value of the repo contract. Notably, there is a strategic
complementarity term in lenders’ utility functions depending on how many
other lenders prefer repo contracts. This term is essential for the run factor.
The simultaneous-move game among lenders is modeled akin to Morris and
Shin (2001). The asset market connects with the repo market through the bud-
get balance condition of buyers. Buyers’ decisions in two markets endoge-
nously determine the evolution of their balance sheets, of which all agents
have rational expectations. The equilibrium framework captures the rich dy-
namics and interactions among the three factors.

Beyond theoretically tracking the interactions of the three factors using
the structural model, quantitatively evaluating their contribution is also im-
portant and interesting. Each of the three factors has straightforward but dis-
tinct policy implications. If the price factor is the most important, bailing out
buyers can be costly and may exacerbate their risk-taking behaviors in the
long run. Also, it implies the security design of RMBS and other structured
financial products need to be regulated after the crisis. If the liquidity factor
is the most important, however, bailing out buyers that are in trouble is cost-
less and beneficial for financial stability. Large asset purchase programs that
boost the liquidity of the asset market are effective and may generate profits.
In the long run, the government also needs to take measures on the informa-
tion disclosure and regulate the credit rating industry to prevent the crisis.
If the run factor is the most important, FED acts as a last resort lender, and
the arrangement similar to the deposit insurance is the most effective tool.
Macroprudential policies such as increasing the reserve ratio of repo borrow-
ers are recommended. Notice that all these policies have different trade-offs
and sometimes contradict each other. Answering my research question is cru-
cial for policy evaluation during the crisis and the regulation reform after it.
Moreover, the importance of each factor may change over time, shedding light
on the timing of different interventions.

Given the importance and the interest in the quantitative result, another
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contribution of this paper is that I solve the model numerically and calibrate
it to data using the standard simulated method of moments. I discipline the
three factors with three sources of information. For the price factor, I estimate
the stochastic movements of asset qualities to match the ABX index. For the
liquidity factor, I use the loss distribution of private-labeled RMBS reported by
Ospina and Uhlig (2018) to calibrate the distribution of asset supplies in differ-
ent qualities. Strategic complementarities among lenders are not observable. I
back it out indirectly. The equilibrium framework endogenously decomposes
the repo spread into four terms: a term related to the over-collateralization,
a term that reflects the buyer’s credit risk, a term that illustrates the strategic
complementarity among lenders, and a term that accounts for the heteroge-
neous outside options. To identify the parameter of strategic complementar-
ity, I simultaneously target the repo spread, the haircut rate (a measure of the
over-collateralization), and the LIB-OIS spread (a proxy of buyer’s credit risk)
published in Gorton and Metrick (2012).

With the calibrated model, I conduct counterfactual experiments to de-
compose the price, the liquidity, and the run factors. Three results deserve
special attention. Firstly, I found the liquidity drying up caused by asymmet-
ric information plays a crucial role in every aspect of the repo market crash. It
explains 30% of the increase in haircut, 13% of the drop in total repo outstand-
ing, and a large part of the increase in repo spread. Secondly, throughout
the crisis, the fundamental-based run has a significant and persistent effect on
the repo rate but only a tiny impact on the repo haircut. Thirdly, the general
equilibrium effect generated from the interactions between the RMBS and the
repo markets explains 33% of the drop in total repo outstanding. This result,
in hindsight, confirms that it is vital to study the RMBS market and the repo
market together rather than separately.

In summary, my results provide structural evidence for the narrative in
Gorton (2009). The unfolding of the repo market crash is likely to be the fol-
lowing. First, it started from quality drops of a subset of subprime RMBS.
These drops were amplified by the asymmetric information friction on the
RMBS market and had detrimental effects on the liquidities of those securi-
ties. Worrying about the volatility of liquidation values of their collaterals,
lenders required higher and higher haircuts for repo borrowing. With less
access to repo fundings, the demand for RMBS declined significantly and fur-
ther depressed both RMBS prices and liquidities. Finally, the repo market fell
into massive turmoil because of panics among lenders, probably triggered by
the failure of Lehman Brothers.
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These results imply bailing out the troubled banks during the great reces-
sion is not as costly as previously believed. My results support various liquid-
ity programs initiated by the FED during the crisis and predict the effective-
ness of those interventions in mitigating the increase of haircuts. However,
my second quantitative result suggests that conventional monetary policies
are ineffective in easing the haircut surge. Federal fund rate cuts increase the
repo spread, which has little effect on the haircuts. Notice that the ineffec-
tiveness is independent of zero lower bounds. I also investigate the impact of
macro-prudential policies such as compulsory cash reserve in section 8.

2 Literature

Quantitative evaluations of the three factors require a model that integrates
the two markets, where asset buyers act as the main connection. In this sec-
tion, I compare each component of my model with their counterparts in the
literature and discuss the value-added.

The price factor is closely related to the ”originate and distribute” expla-
nation for the Great Recession. This narrative emphasizes the incentive struc-
ture implied by the wholesale banking system. The main idea is summarized
by the principal-agent theory. The agent (the originator of the loans) did not
have the incentives to act fully in the interest of the principal (the ultimate
holder of the loan). Originators had every incentive to maintain origination
volume because that would allow them to earn substantial fees, but they had
weak incentives to maintain loan quality. The declining underwriting stan-
dard of the subprime mortgage loans before the crisis is documented by sev-
eral empirical studies such as Keys et al. (2008), Keys et al. (2009) and Keys
et al. (2012). However, declining underwriting standards does not necessarily
imply that the quality of the mortgage-backed security is low, considering that
these securities are specifically designed to hedge the potential increasing de-
fault risk. Indeed, from a retrospective view, Ospina and Uhlig (2018) has doc-
umented that the AAA-rated subprime mortgage-backed securities have bet-
ter performance than the AAA-rated prime mortgage-backed securities. Fur-
thermore, even if some of the mortgage-backed securities have experienced a
significant quality drop, how much it contributes to the repo market crash is
unclear. My paper takes this literature as the micro-foundation of the price
factor and contributes to it by evaluating its quantitative significance.

There are also many other authors focusing on asymmetric information
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friction in the structural financial products market. Some of the related works
are Guerrieri et al. (2010), Guerrieri and Shimer (2014), Guerrieri and Shimer
(2018), Chang (2018), and Williams et al. (2016). All these papers embed asym-
metric information friction with single or multi-dimensional private informa-
tion into a standard directed search model (in discrete or continuous-time). A
common feature is that buyers and sellers endogenously use prices and liq-
uidities as signaling/screening devices. The more severe the asymmetric in-
formation friction is, the lower the liquidities and prices are. My model shares
a comparable framework and has similar theoretical implications. However,
there are important differences. The first difference is that buyers in all papers
above either have a fixed budget or deep pocket, which eliminates the role of
demand fluctuation in the asset market equilibrium dynamics. Hence they are
unable to capture the feedback between the asset market and the repo market.
My model allows buyers’ total budget of purchases endogenously determined
within the framework and has nontrivial interaction with asset prices and liq-
uidities. The second difference is that to capture the price factor, my model
follows a stochastic setup. I have generalized and confirmed that the solu-
tion techniques in the literature, with some modifications, also work in the
stochastic case.

The lenders’ run is quite similar to the run on the traditional banking sec-
tor. Models in this category can be divided into two subgroups. The first is
that the crisis is attributed to the coordination failures among lenders such as
Diamond and Dybvig (1983). This kind of run relies on the existence of the
multi-equilibrium. The probability of a run is determined outside the model.
The other type of run is more often referred to as ”fundamental-based” run.
Morris and Shin (2001) and Goldstein and Pauzner (2005) are two represen-
tatives. They introduce small noises to relevant fundamentals perceived by
agents. This small incomplete information friction, strikingly, leads to the se-
lection of a unique equilibrium, despite agents are strategically complemen-
tary to each other. The probability of a run is determined endogenously. For
my goal of the research, I follow Morris and Shin (2001) for the modeling of the
repo market. An alternative model is He and Xiong (2012), which analyzes a
dynamic coordination problem and also obtains uniqueness. The main differ-
ence between my model and theirs is that they (and the most of papers with
similar models) take the relevant fundamentals as an exogenous stochastic
process. My paper, however, connects the economics fundamentals with asset
markets. Lenders’ payoffs are jointly determined by not only other lenders’
actions but also prices and liquidities determined on the asset market.
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This paper also completes the literature on the explanation of the Great
Recession. From the theoretical perspective, Bernanke and Gertler (1989),
Bernanke and Gertler (1990) and Kiyotaki and Moore (1997) pioneer the re-
search on the dynamics of collateral values, the agents’ ability to borrow and
the business cycle. For its application, to mention a few, Jermann and Quadrini
(2012), Shi (2015), and Del Negro et al. (2017) test and evaluate how do finan-
cial shocks, together with different mechanisms, explain (or fail to explain) the
Great Recession. While they connect the financial shocks with the business
cycle fluctuation, my model supplements the picture by providing a theory
illustrating how do housing market fluctuations develop to a financial market
turmoil, explaining the source of these financial shocks. Brunnermeier and
Pedersen (2009), Martin et al. (2014) and Wang (2019) consider the related hy-
pothesis of the repo market crash. Their models either feature finite periods
or are hard to calibrate. My model is the only one that generates quantitative
implications.

3 Model

3.1 The Model Environment

Time, denoted by t, is discrete and infinite. There are three types of agents in
the model: asset sellers (henceforth abbreviated as sellers), asset buyers who
purchase assets, and at the same time borrow cash via repo contract (hence-
forth abbreviated as buyers/borrowers), and lenders who lend cash to buyers.
Each type contains a continuum of risk-neutral individuals.5 The aggregate
measure for sellers and lenders is one. There is a unit measure of buyer fami-
lies. Within each buyer family, there exists a continuum of individual buyers
with measure one. Agents interact with each other in two markets: an asset
market where sellers and buyers trade assets and a repo market where buyers
borrow cash from lenders by posting their asset holdings as collaterals. Let
ρl denote the discount factor for sellers, and ρh with 0 < ρl < ρh be the dis-
count factor for buyers and lenders. The difference between discount factors
demonstrates the potential gains from trade on the asset market.

Assets are indivisible Lucas trees. A type j asset generates a flow divi-
dend δt,j in period t, where j ∈ {1, 2, ..., J}. Throughout this paper, I assume

5My results do rely on the risk-neutrality of buyers but can be generalized to the case
where sellers and lenders are risk-averse.
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that J < ∞. For all types, asset matures independently and randomly with
a probability α ∈ (0, 1) in each period. {δt,j}J

j=1 are stochastic and follow a
finite state Markov chain. For sake of simplicity, from now on I assume that
type j ≥ 2 assets have constant qualities.6 The probability distribution of
δt+1,1 conditional on δt,1 is written as Tδ(·|δt,1) with a finite support ranging
from δ1 to δ̄1. I label the quality of assets with an increasing order. That is,
0 < δ1 ≤ δt,1 ≤ δ̄1 < δ2 < ... < δJ . The realization of {δt,j}J

j=1 are common
knowledge for all agents. It captures the realism that the aggregate risk of
assets are publicly revealed.

Sellers are heterogeneous in the type of assets they own, indexed by j.
Each type j seller holds one unit of type j asset. Sellers with a matured or a
sold asset will be replaced by an identical clone at the beginning of the next
period. Therefore asset supply is fixed over time for any type j.7 Let {Mj}j

with ∑j Mj = M̄ denote the distribution of this fixed supply. Importantly,
I assume that the quality type of a particular asset is only observable to its
seller. In another word, a seller’s type is private information. Therefore, the
asset market suffers an adverse selection problem, and the extent of which
varies over time as δt,1 moves stochastically.

It will be clear after the complete description of the model that individual
buyers are potentially subject to ex-post heterogeneity. I smooth the hetero-
geneity by assuming that individual buyers who belong to the same buyer
family all pool their asset holdings together at the end of each period. As in
Shi (2015) and Del Negro et al. (2017), this is a commonly used assumption
in the literature to facilitate the aggregation and it allows me- to focus on the
essence of the hypothesis without losing tractability. Notice that none of the
price, the liquidity, and the run factors depend on the heterogeneity and the
risk-sharing among buyers.

Buyers are present in both the asset market and the repo market. The bud-
get of buyers’ purchases on the asset market comes from two sources: internal
funding generated from the dividends of asset holdings and borrowing from
lenders via repo contracts. I assume each dollar of repo contract matures inde-
pendently with probability β where 0 < β < α. Individual buyers are subject

6This is without lose of generality. Even though at an expanse of enlarging the state space,
all my theoretical results hold without this assumption.

7All my analytical results remain with small modifications if I instead assume an exoge-
nous variable asset supply, as long as agents in the model have perfect foresight for it. I believe
that the supply side variation of assets is not the key driving force during the great recession
since, without demand changes, the observed drop of asset supply will be inconsistent with
the observed prices decrease.
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to default risks that depend on the balance sheet condition of their family. If
a default event happens, lenders associated with that buyer will take over the
collateral portfolios and liquidate them on the market.

Each lender is endowed with B̄ dollars when they are born. Lenders
choose between a buyer-proposed repo contract and stochastic outside op-
tions. Similar to sellers, I assume the total measure of lenders is 1 for all t.
Lenders are replaced by another lender in the next period if one of the fol-
lowing events happens: they choose the outside option; their repo contract is
being repaid, and the buyer defaults. I assume lenders have heterogeneous
utility for the same repo contract which is realized when they are born. De-
tails will be specified in the later section. Figure 2 illustrates the repo market
structure.

Figure 1: Timeline Within a Period

Figure 1 illustrates the timeline within each period. At the beginning of
period t, the maturity shock and δt,1 realize. Dividends are being distributed
to asset owners. After that, new sellers and new lenders arrive. Observing
these shocks, buyers propose repo contracts to lenders on the repo market.
Conditional on the proposed repo offers and rational expectations on future
asset prices and liquidities, lenders choose between their outside options and
repo contract simultaneously. Buyers then get the cash from the repo mar-
ket. They will honor the repo contract sold in the last period first and take
whatever is left to the asset market8. Buyers and sellers then trade with each
other.

I model the asset market by a competitive search framework à la Guerrieri
8As it will be clear in the later part, it is a dominated strategy that buyers carry a positive

amount of cash to the next period without buying assets on the asset market.
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Figure 2: Repo Market Structure

and Shimer (2014). Figure 3 illustrates the asset market structure. Precisely, at
each period t, a continuum of sub-markets identified by prices p ∈ R+ may
open up. Both buyers and sellers can visit any such sub-market or an arbitrary
set of sub-markets with their assets or cash. However, each unit of asset or
dollar can only appear in one sub-market. Sellers are committed to selling
their assets with a price of p in sub-market p if they are successfully matched
with a buyer. Similarly, buyers undertake to buy the asset with a price of p in
sub-market p if they are successfully matched with a seller.

Buyers and sellers have rational expectations for the likelihood of being
matched in any sub-market p. Let Θt(p) denote the ratio between the amount
of cash brought by buyers and the total amount of resources to purchase all
assets in the sub-market p. I assume the probability that a seller can meet a
buyer in sub-market p at time t is min {Θt(p), 1}9. That is, if Θt(p) ≥ 1, the to-
tal resources brought by buyers are more than enough to buy all assets in this
sub-market. In such a case, every seller can successfully trade. If Θt(p) < 1,
every buyer can successfully trade and sellers are being rationed. On the con-
trary, the probability that a buyer can match with a seller is min{Θt(p)−1, 1}.
Buyers and sellers also have rational expectations for the (conditional) quality
distribution of assets sold in each market p. Let Γt(p) ≡ {γt,j(p)}J

j=1 ∈ ∆J in-

9This specification of the matching function highlights the role of the asymmetric infor-
mation friction. As will be clear in the latter part of the paper, if there is no asymmetric
information friction, all assets will be sold with probability one. This implies that the source
of the liquidity issue is solely from the asymmetric information friction, not the search fric-
tion. With small modifications, all results can be generalized to commonly used matching
functions in the literature.
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Figure 3: Asset Market Structure

dicates such distribution, where ∆J is the J dimensional simplex. It is common
knowledge that a successfully matched buyer can get a quality j asset in sub-
market p at period t with probability γt,j(p). Notice that Γt(p) contains both
on-equilibrium path beliefs and off-equilibrium path beliefs. For convenience,
I define the on equilibrium path (unconditional) cumulative distribution func-
tion of type j trade (over submarkets p ∈ R+) as Ωt,j(p).

I will focus on the stationary Markov perfect equilibrium. Therefore, to
save notations, I drop the time index t everywhere except for the state variable
st. The aggregate state st represents the vector

(
Bt, (Kt,j)j, δt,1

)
, where Bt is the

total amount of repo contract owed by buyers in period t, (Kt,j)j is the portfolio
of asset holdings by buyers in period t, and δt,1 is the random quality for the
type 1 asset. I am ready to state agents’ optimization problems.

3.2 Seller’s Decision

In this part, I take the state st and its transition function as given. I will endog-
enize them in the general equilibrium part. Let Vs

j (st) denote the value of type
j seller at the beginning of period t. Taking the (equilibrium) market tightness
function Θ(st, p) as given, the Bellman equation of seller’s decision problem
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writes as follows

1
1− α

Vs
j (st) = δt,j + max

p∈R+

{
min{Θ(st, p), 1}p

+ ρl(1−min{Θ(st, p), 1})Et
[
Vs

j (st+1)
]}

. (1)

The term 1
1−α on the left-hand side takes care of the possibility that sellers

are hit by the maturity shock. The first term on the right-hand side δt,j is the
dividend obtained from holding the asset j. Notice that δt,j ≡ δj for j ≥ 2.
Sellers optimally choose a sub-market indexed by p, in where she expect to
meet a buyer with probability min{Θ(st, p), 1}. When the trade is successful,
the seller exit the market with the revenue p; when the trade does not happen,
she keeps the asset and enters the next period. The conditional expectation is
calculated according to the transition of aggregate state st.

3.3 Lender’s Decision

Consider the decision problem of a lender when the aggregate state is st. I
introduce several notations first. Suppose the buyer proposes a repo contract(

R, (k j)j
)
, where R denotes the coupon spread over a lender’s outside option

and (k j)j is the collateral portfolio. Given the rational expectation of asset
prices and liquidities, I denote the liquidation value of a type j asset as cj(st):

cj(st) =
∫

R+

p · Pr (min{Θ(st, p), 1}) dΩj(st, p)

+

(
1−

∫
R+

Pr (min{Θ(st, p), 1}) dΩj(st, p)
)
· vs

j(st), (2)

where 1− Pr (min{Θ(st, p), 1}) is the probability that a lender has to fire sale
the asset. If the fire sale event happens, vs

j(st) is the fire sale price. If the fire
sale event does not happen, (2) says that the liquidation value of a type j asset
is the average market price. The function Pr(·) is an increasing function of the
market liquidity Θ(st, p). I will specify the exact functional form of it in the
calibration section. I assume the fire sale price is the holding value of the asset
by the agent who values it the least. In this case, that agent will be the seller.
Therefore, I can recursively define

vs
j(st) = (1− α)

{
δt,j + ρlEt

[
vs

j(st+1)
]}

. (3)
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Thus, the liquidation value for collateral portfolio
(
k j
)

j is

C
(

st,
(
k j
)

j

)
= ∑

j
cj(st)k j. (4)

Suppose the buyer’s cash balance is Cash(st)10. I denote the default probabil-
ity of such buyer as π (Cash(st)). π(·) is a decreasing function with a range of
0 to 1 and the exact functional form will be delayed to the calibration section.
Let vl

j(st) be the expected discounted present value that a lender can recover

from a unit of type j asset when a default event happens. And let vl
π(st) be

the expected discounted present value that a lender suffers from the future
default event. I can write

vl
j(st) = βπ · cl

j(st) + ρh(1− α)(1− β)(1− π)Et
[
vl

j(st+1)
]
; (5)

vl
π(st) = −βπ + ρh(1− β)(1− π)Et

[
vl

π(st+1)
]
. (6)

To capture the strategic complementarity among lenders, I assume the
lender’s utility for the repo contract contains a term ϕ · SC( f ).11 ϕ is a con-
stant and is the key parameter to be calibrated in the quantification exercise.
f is the fraction of other lenders who choose the repo contract over the out-
side option and SC( f ) is an increasing function of f . The exact functional
form is delayed to the later section. Similar to the idea in Morris and Shin
(2001), I introduce incomplete information to refine the multi-equilibrium is-
sue introduced by SC( f ). In particular, I assume each lender is born with a
lender-specific heterogeneous utility for holding a repo contract per period:
ui,t. This random utility may come from lenders’ heterogeneity in outside op-
tions, liquidation cost of the collaterals, and long-term relationships with the
buyer, etc. It is common knowledge among lenders that ui,t has the structure

ui,t = µt + εi,t,

where µt is the aggregate component for all lenders. And εi,t is the idiosyn-
cratic component. For tractability, I assume lenders (commonly) believe that
µt ∼ N

(
0, σ2

0
)

and εi,t ∼ N (0, σ2). Lenders observe the realization of ui,t, but
they cannot observe µt and εi,t separately. In my benchmark model, I consider

10This is an abuse of notation for simplicity. It will be clear in the next section that Cash(·)
is a function of both st and the issuance of new repo contract NR. Since in the equilibrium,
NR is also a function of st, I can substitute it out.

11Directly including this term into the lender’s utility is a short-cut. My model is designed
for quantifying the strategic complementarity, not explaining its source.
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the case that the true realization of µt is always 0 for simplicity12. Therefore,
µt is abbreviated from the aggregate state.

Thus, the difference of expected return between the repo contract and the
outside option for a newborn lender is

V l (st, R, (k j)j, f , ui,t
)
=

R + ui,t

1− ρh(1− β)
+ ϕ · SC( f )

+ ρh
{

∑
j

Et
[
vl

j(st+1)
]
k j + Et

[
vl

π(st+1)
]}

. (7)

For simplicity, I have assumed that the discounted sum of coupon payments is
deducted immediately when contracting. Hence coupon payments are default-
remote. As shown by the equation (7), a lender’s utility is the sum of four
parts: the expected protection from the collateral portfolio; the expected loss
from the default event; the term represents strategic complementary; and the
random utility part. The lender’s decision problem is

max
{

V l (st, R, (k j)j, f , ui,t
)

, 0
}

. (8)

This completes the description of an incomplete information simultaneous-
move game among newborn lenders. To facilitate the further illustration, I
denote this game as G

(
st, R, (k j)j

)
.

3.4 Buyer’s Decision

All buyer families are identical, so the aggregate state is the same as the state
of a buyer family, which is denoted as st. Each buyer family contains a unit
measure of individual buyers. This structure facilitates the aggregation and
allows us to focus on the three factors without worrying about the intractabil-
ity generated from buyers’ heterogeneity. To achieve this, I assume at the end
of each period, all individual buyers pool their balance sheets together and re-
ceive an equal share of both assets and liabilities in the next period. While bal-
ance sheets are fully insured among individual buyers, to provide incentives,
consumption is distributed to each individual buyer according to their contri-
bution to the total asset purchases. Suppose an individual buyer `13 has state

12Introducing aggregate uncertainty other than the stochastic quality of assets blurs my
focus. The incomplete information about ui,t is only included for equilibrium refinement.

13The index ` will be abbreviated for simplicity wherever there is no confusion.
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s̃t =
(
(K̃t,j)j

)
, where (K̃t,j)j is the total asset stock purchased by this individ-

ual buyer. In period t, an individual buyer receives consumption ω ·∑j K̃t,jδt,j

where ω ∈ (0, 1] is fixed. Every buyer is obligated to repay the maturing repo
liability βBt. In return, she gets an amount of cash (1− ω) · ∑j Kt,jδt,j for in-
vestment and a portfolio of assets (βKt,j)j as collaterals for new repo contract
issuance. Due to the search friction on the asset market, at the end of a period,
there may exist some cash used for investment but failed to trade. I assume the
buyer family redistributes these cash back to individual buyers for immediate
consumption in a lump sum way. Let us denote this term as LT(st).

All relevant decisions are made by individual buyers. Unless otherwise
indicated, “buyers” hereafter refers to individual buyers. Given an aggregate
state st and a buyer’s state s̃t, each buyer decides the term and the amount of
repo contract on the repo market and makes decisions on how much to invest
and which submarket to visit on the asset market. The objective of a buyer is
to maximize the discounted sum of her consumption. Mathematically, in each
period t with state st and s̃t, a buyer chooses a vector

{
NR, I, F,

(
R, (k j)j

)}
where NR is the issuance of the new repo contract, I is the total amount in-
vested on the asset market, F(st, p) describes the cumulative distribution func-
tion of cash spent on each sub-markets, and

(
R, (k j)j

)
indicates terms of the

repo contract. The recursive optimization problem is

Vb(st, s̃t) = max ω ·∑
j

K̃t,jδt,j + LT(st) + ρhEt

[
Vb(st+1, s̃t+1)

]
. (9)

Buyers’ state is subject to law of motion:

K̃t+1,j = (1− α)
{
(1− β · 1d(st, NR))K̃t,j

+ I ·
∫

R+

min{Θ−1(st, p), 1}
p

γj(st, p)dF(st, p)
}

, (10)

where 1d(st, NR) is the indicator function for the default event. The proba-
bility of default follows π(Cash(st, NR)). Cash(·) is the cash available for a
buyer after coupon payment:

Cash(st, NR) = (1−ω) ·∑
j

Kt,jδt,j +

(
1− R

1− ρh(1− β)

)
NR− βBt. (11)
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Control variables are subject to resource constraints

0 ≤ NR ≤ f (st, R, (k j)j) · B̄ · (1− 1d(st, NR)) ; (12)

0 ≤ I ≤ max {Cash(st, NR), 0} , (13)

where f (st, R, (k j)j) is the equilibrium outcome of the game G(st, R, (k j)j). I
also have constraints on the terms of the repo contract:

k j ≤
βKt,j

NR
· (1− 1d(st, NR)) for all j; R ∈ [0, 1]; and C

(
st, (k j)j

)
≥ 1.

The first constraint requires the promised collateral cannot exceed total avail-
able asset holdings and the third constraint requires the liquidation value of
the collateral portfolio must weakly exceed the face value of a repo contract.
The function C

(
st, (k j)j

)
is defined in (4). The evolution of st is simply aggre-

gation of B̃t and (K̃t,j)j across all buyers:

Bt+1 = (1− β)Bt +
∫ 1

0
NR(`)d`; (14)

Kt+1,j =
∫ 1

0
K̃t+1,j(`)d`. (15)

And the lump sum transfer LT(st) is

LT(st) =
∫ 1

0
I(`) ·

(
1−

∫
R+

min{Θ−1(st, p), 1}dF(p)
)

d`. (16)

Several observations are immediate from the buyer’s problem. First of all,
taking derivatives with respect to I and NR, I have that the upper bounds for
both constraints (12) and (13) must be binding. The intuition is the following.
Consider the trade-off for I first. The benefit from one more dollar of invest-
ment is clearly positive since it generates more future consumption. The cost
of investment is not internalized by buyers because they are infinitesimal and
equally share the balance sheet with the rest of their families. A similar idea
goes for the new repo issuance NR. Issuing one more unit of repo contract can
relax the constraint for I. From my previous discussion, this strictly benefits
the buyer.

Secondly, the investment choice F is independent of s̃t. This comes from
the linearity of Vb in K̃t,j. That is, the marginal benefit of having one more
unit of type j asset depends only on the aggregate state. Thus, repo con-
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tracts
(

R, (k j)j
)

are independent of s̃t since all lenders’ decisions only de-
pend on the aggregate state. Therefore, I conclude that the optimal choice{

NR, I, F,
(

R, (k j)j
)}

are all independent of individual buyers’ state s̃t.

As a consequence, the aggregate state st+1 are independent of s̃t condi-
tional on st. This observation greatly simplifies the optimization problem.
Even though there is ex-post endogenous heterogeneity among buyers due to
the search friction and default risk, I do not need to keep track of them.

For buyers who are hit by the default shock, clearly from the constraint
(12), the new repo issuance is 0. The optimal repo contract has an arbitrary
repo rate and zero collateral portfolio. The optimal investment is (1 − ω) ·
∑j Kt,jδt,j − βBt. From now on, I focus on the buyers who do not default.

It is useful to define vb
j (st) as the discounted sum of dividends consump-

tion by buyers from holding one unit of type j asset. The Bellman equation
satisfies

vb
j (st) = (1− α)

{
ωδt,j + ρh(1− π(Cash(st, NR)))Et[vb

j (st+1)]
}

. (17)

Thus, I can separate the buyer’s optimization problem into two independent
sub-problems.

Problem 1. An individual buyer’s repo issuing problem:

max
R∈[0,1],(kj)j

(1− R
1− ρh(1− β)

) · f (st, R, (k j)j),

subjects to

k j · f (st, R, (k j)j) · B̄ ≤ βKt,j;

C(st,
(
k j
)

j) ≥ 1.

I denote the optimal policy of buyer’s repo issuing problem as R∗(st) and
(k∗j (st))j. Let the total issuance of new repo contracts be NR∗(st). I can sim-
plify the law of motion for Bt in (14) as

Bt+1 = (1− β)Bt + (1− π(st, NR∗)) · NR∗(st). (18)
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Problem 2. An individual buyer’s asset investment problem:

λ(st) = max
F(st,p)

∫
R+

∑
j

min{Θ−1(st, p), 1} · ρhEt[vb
j (st+1)]

p
γj(st, p)dF(st, p)

(19)

λ(st) represents the rate of return when the aggregate state is st. Suppose
the buyer brings a measure dF(st, p) of cash to the sub-market p. There are
two possible results. With probability min{Θ−1(st, p),1}, the buyer can suc-
cessfully trade with a seller. Regardless of the seller’s type, the buyer has to
pay p for the asset. With probability γj(st, p), the asset is of type j, and each
type j asset generates a total discounted value ρhEt[vb

j (st+1)] for the buyer. I
further assume the λ(st) satisfy the following restriction

λ(st) ≥ 1. (20)

One rationalization is that buyers have access to a risk-free bond. Similar to
the asset in my model, each buyer is able to consume an ω portion of it every
period. To save notations, I take the shortcut (20) and restrict λ(st) directly.
Combining with the optimal investment for buyers who default, I obtain the
total investment of a buyer family I∗(st):

I∗(st) = π(st, NR∗) ·max

{
(1−ω) ·∑

j
Kt,jδt,j − βBt, 0

}
+ (1− π(st, NR∗))

·max

{
(1−ω) ·∑

j
Kt,jδt,j − βBt + (1− R∗

1− ρh(1− β)
) · NR∗, 0

}
. (21)

Let the optimal policy function of buyer’s investment problem be F∗(st, p).
I can simplify the law of motion for Kt,j:

Kt+1,j = (1− α)
{
(1− β · π(st, NR∗)) · Kt,j

+ I∗(st) ·
∫

R+

min{Θ−1(st, p), 1}
p

γj(st, p)dF∗(st, p)
}

(22)
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4 Equilibrium

4.1 Partial Equilibrium on the Asset Market

In this section, I define and analyze the equilibrium. To simplify the expo-
sition, I solve it backwardly. Let us consider the partial equilibrium of the
asset market first. Recall that the aggregate state of the economy is st =(

Bt, (Kt,j)j, δt,1
)
.

Definition 1. Taking as given the aggregate state st, its transition function, and the
rate of return λ(st), the partial equilibrium on the asset market is a tuple of functions(
{Vs

j (st)}j, Θ(st, p), Γ(st, p), F∗(st, p)
)

satisfying the following conditions: ∀st

1. Seller’s Optimality: Given functions Θ(st, p) and Γ(st, p), Vs
j (st) solves (1),

for all j ∈ {1, 2, ..., J};

2. Buyer’s Optimality: Θ(st, p), Γ(st, p) and λ(st) satisfies (19);

3. Equilibrium Beliefs: For all j ∈ {1, 2, ..., J}, st and p such that Θ(st, p) < ∞
and γj(st, p) > 0, p solves the maximization problem on the right hand side of
(1) for type j seller;

4. Active Markets: Given functions λ(st), Θ(st, p) and Γ(st, p), F∗(st, p) solves
the maximization problem on the right hand side of (19);

5. Consistency of Supplies with Beliefs: For every state st and any j ∈ J ∗, func-
tion Γ(st, p) satisfies

Mj

∑k∈J∗ Mk
=
∫

R+

γj(st, p)dF∗(st, p); (23)

where

J ∗ =
{

j ∈ {1, 2, ..., J}|Ωj(st, p) > 0 for some p > 0
}

,

and

Ωj(st, p) =
∫ p

0
γj(st, p′)dF∗(st, p′).

The equilibrium in Definition 1 is named a partial equilibrium since it
takes st, its transition function and λ(st) as given. I will endogenize these
three objects in the general equilibrium part. The definition is a stochastic
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generalization of the equilibrium in Guerrieri and Shimer (2014). Conditions
for sellers’ and buyers’ optimality are standard. For a buyer to get an asset j in
submarket p with positive probability, I need two prerequisites: (1) the proba-
bility that the buyer can match with a seller is positive, which is equivalent to
Θ(st, p) < ∞ and (2) a type j asset is sold in submarket p, which translates to
γj(st, p) > 0. Therefore, conditions for equilibrium beliefs states that regard-
less of a market p is active or not (on and off the equilibrium path), if a buyer
expects that she can get a quality j asset with positive probability, it must be
weakly optimal for type j seller to show up on sub-market p. Condition for
active markets demonstrates the optimality of buyers’ purchases on the asset
market. The set J ∗ represents the set of assets that are actively traded.

Though the definition is straightforward, solving the equilibrium is not
trivial. The main difficulty is that the equilibrium concept contains many high
dimensional objects such as Θ(st, p) and Γ(st, p). To overcome this problem,
the partial equilibrium on the asset market is solved in several steps. The argu-
ment is a generalization of that in Guerrieri and Shimer (2014). I demonstrate
a sketch of procedures here and leave the detailed discussion in Appendix B.
To characterize the solution, I notice first that they can be reconstructed from
solutions to a series of auxiliary problems P1,P2, ...,PJ .

Problem 3. Taking as given the function λ(st) and transition function of state st, the
solution to problem Pj (j ≥ 1) is a pair of functions (with slightly abuse of notations)(
Vs

j (δt,1, λ(st)), pj(st), θj(st)
)

solving

1
1− α

Vs
j (δt,1, λ(st)) = δt,j + max

pj(st),θj(st)

{
min{θj(st), 1}pj(st)

+ ρl(1−min{θj(st), 1})Et
[
Vs

j (δt+1,1, λ(st+1))
]}

, (24)

with constraints for every st

λ(st) ≤
min{θ−1

j (st), 1} · ρhEt[vb
j (st+1)]

pj(st)
, (25)

and for all j′ < j, all st

Vs
j′(δt,1, λ(st)) ≥ δt,j′ + min{θj(st), 1}pj(st)

+ ρl(1−min{θj(st), 1})Et
[
Vs

j′(δt+1,1, λ(st+1))
]
. (26)
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Here the constraint (26) for problem P1 is empty. And value functions Vs
j′(·)

for j′ < j are defined in the solution to Pj′ by mathematical induction.

The motivation for problem 3 is the following. There is a similarity be-
tween the intuitive criterion by Cho and Kreps (1987) and the equilibrium
beliefs condition in definition 1. Moreover, it is well known that Spence’s sig-
naling game has a unique equilibrium outcome that survives the intuitive cri-
terion – the separating equilibrium. It will not be surprising that better sellers
in my model signal their qualities by posting higher prices and the equilib-
rium is separating, too. This observation (guess) greatly simplifies the prob-
lem by reducing the infinite-dimensional objects, conditional on st, Θ(st, p)
and Γ(st, p) to real numbers (pj(st), θj(st))j on the equilibrium path. Another
simplification is that, instead of solving both the buyer’s optimization and
seller’s optimization problems, I take the buyer’s reservation value as given
and let sellers make choices. It is the market utility approach14 commonly used
in this type of model.

To solve the problem Pj, I proceed with several lemmas, which are for-
mally stated and proved in Appendix B. Lemma B.1 proves the monotonicity
of Vs

j (·) with respect to j conditional on state st. The idea is that whenever
a policy pj′(st), θj′(st) is feasible to problem Pj′ , the same policy must also be
feasible for Pj with j > j′. problem 3, implies important single crossing con-
ditions among the values Vs

j (·). That is, higher types would put more weight
on asset prices than liquidities when considering the trade-off between these
two factors.

Lemma B.3 confirms that for all j, the constraint (25) is binding at every
state st. To see it, for a contradiction, suppose (25) does not bind. When j = 1,
the statement is clear since a seller can always increase the price and be better
off without influencing anything else. When j > 1, however, I need to worry
about constraints (26) (hereafter I call them IC constraints). The strategy is to
increase pj(st) and decrease θj(st) at the same time so that (25) is binding while
(26) are still satisfied. This is possible thanks to the single crossing condition
implied from lemma B.1. Moreover, the deviating strategy increases seller j’s
value. Hence I have found a contradiction.

Next, in lemma B.5, I demonstrate that IC constraints are binding between
adjacent types, i.e. j and j− 1 for all j > 1, and are slack otherwise. Let us take
the example of the problem P2 and suppose that IC is slack. Thus, both prob-
lem P1 and problem P2 have no IC constraints. Intuitively, there is no reason

14See Wright et al. (2019) page 5 for application of such methodology.
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for sellers, regardless of their types, to lower down the probability of trade.
Lemma B.4 confirms this intuition and proves that, under this condition, opti-
mal choices of both θ1(st) and θ2(st) are weakly larger than 1. However, since
constraint (25) are binding which implies p1(st) < p2(st), the IC constraint
between type 2 and type 1 sellers must be violated: there is strict incentive
for type 1 seller to mimic the type 2 seller for higher prices without lowering
down the trading probability.

Lemma B.6 exhibits the existence and uniqueness of solutions to problem
Pj. This follows from a simple mathematical induction. Since constraint (25)
is binding in P1. After substituting it back to the objective function and re-
calling that θ1(st) ≥ 1, a standard contraction mapping argument shows the
existence and uniqueness of Vs

1 (·). From the induction hypothesis, taking as
given Vs

j−1(·), I can solve pj(st) and θj(st) as functions of λ(st), Vs
j−1(·) and

vb
j (·) from binding constraints (25) and (26). Substituting these back to the ob-

jective function, again, I am ready to apply the standard contraction mapping
routine. This proves the existence and uniqueness.

The last step is to confirm the equivalence between solutions to auxiliary
problems and the original partial equilibrium on the asset market. On the one
hand, lemma B.7 argues that solutions to problems {Pj}j, after some modifi-
cations, can serve as a partial equilibrium in definition 1. Notice that θj(st) and
pj(st) are prices and liquidities for active markets (on the equilibrium path), I
still need to construct the market tightness function for inactive markets from
equilibrium beliefs condition. The idea is to use the equilibrium belief condi-
tion in definition 1. Thus, combined with lemma B.6, lemma B.7 shows the
existence of partial equilibrium on the asset market. On the other hand, I pro-
vide the reverse result in lemma B.8 such that from every partial equilibrium
in definition 1, I can construct solutions for problems {Pj}j. This result estab-
lishes the uniqueness of the partial equilibrium on the asset market.

I summarize the main findings with the following proposition. For all st,
let us define λ̄(st) as

λ̄(st) ≡
ρhEt[vb

1(st+1)]

(1− α)ρlEt

[
δt+1,1 +

ρhEt+1[vb
1(st+2)]

λ(st+1)

] ;

and λ(st) ≡ 1.

Proposition 1. Taking as given the aggregate state st and assume its transition func-
tion satisfies Feller property. Suppose functions λ(st) is continuous in st. There ex-
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ists a partial equilibrium on asset market. Moreover, if λ(st) < λ(st) < λ̄(st) for
all states st, the equilibrium is unique. Suppose

(
pj(st), θj(st), Vs

j (δt,1, λ(st))
)

is the
solution to problems {Pj}j, for all states st, the equilibrium satisfy

1. Separating markets: for all j, γj(st, pj(st)) = 1;

2. No distortion at the bottom: one of the following two cases are true
(i) Θ(st, p1(st)) = θ1(st) ≥ 1 and 0 ≤ Θ(st, pj(st)) = θj(st) < 1 for j > 1
(ii) Θ(st, p1(st)) = θ1(st) < 1 and Θ(st, pj(st)) = θj(st) = 0 for j > 1

3. Seller’s value increasing in types: for all j, Vs
j (δt,1, λ(st)) = Vs

j (st) and Vs
1 (st) <

Vs
2 (st) <, ...,< Vs

J (st);

4. Decreasing liquidities and increasing prices in types: θ1(st) > θ2(st) ≥, ...,≥
θJ(st) and p1(st) < p2(st) <, ...,< pJ(st).

On the equilibrium path, prices pj(st) and liquidity θj(st) are determined
by the following equation system.

pj(st) =
ρhEt[vb

1(st+1)]

λ(st)
, for all j ∈ {1, 2, ..., J} (27)

θj(st) = min{θj−1(st), 1} ·
pj−1(st)− ρlEt[Vs

j−1(st+1)]

pj(st)− ρlEt[Vs
j−1(st+1)]

for all j ≥ 2, (28)

with θ1(st) ≥ 1 when λ(st) > λ(st) and θj(st) = 0 for all j ≥ 2 if λ(st) = λ̄(st).
The complete description of Θ(st, ·) and Γ(st, ·) with proofs are presented in
appendix B. To further verify that the model can capture the intuition of my
hypothesis, I investigate comparative statics properties of the partial equilib-
rium on the asset market. I verify that when the “market condition” leans
towards buyers, which is captured by a higher λ(st) (in a single state st), both
the equilibrium price and the liquidity drops. Results are summarized in the
proposition below and the proof is delegated to the appendix B.

Proposition 2. Fix a transition function of st and assume it satisfies Feller property.
Fix functions λ(st) and suppose they are continuous in st. Suppose

(
{Vs

j (st)}j,
Θ(st, p), Γ(st, p), F(st, p)

)
is a partial equilibrium associated with function λ(st).

Suppose also
(
Ṽb(st), {Ṽs

j (st)}j, Θ̃(st, p), Γ̃(st, p), F̃(st, p)
)

is a partial equilibrium
associated with function λ̃(st). Given any state st and j, if λ̄(st) > λ̃(st) > λ(st) >

λ(st) and λ̄(s′t) > λ̃(s′t) = λ(s′t) > λ(st) for all s′t 6= st, the equilibrium price
satisfies p̃j(st) < pj(st) and liquidity satisfies θ̃j(st) ≤ θj(st).
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4.2 Partial Equilibrium on the Repo Market

In this subsection, I define and characterize the equilibrium among lenders in
the repo market. For any repo contract and aggregate state st, I say a lender
who observes ui,t employ a threshold strategy if there exists a threshold func-
tion κ∗

(
st,
(

R, (k j)j
))

such that the lenderChooses Repo Contract if ui,t ≥ κ∗
(
st,
(

R, (k j)j
))

Chooses the Outside Option Otherwise
.

For simplicity, I focus on the symmetric threshold equilibrium.

Definition 2. Taking as given a repo contract
(

R, (k j)j
)
; the aggregate state st and

its transition function; and an asset market partial equilibrium Θ(st, p) and Γ(st, p),
a symmetric threshold equilibrium on the repo market is a threshold strategy em-
ployed by all lenders that survives IDSDS (iterative deletion of dominated strategies)
of G(st, R, (k j)j).

By this definition, since I assumed µt ≡ 0 and the equilibrium threshold
is κ∗

(
st,
(

R, (k j)j
))

, the fraction of lenders taking the repo contract is

f
(
st,
(

R, (k j)j
))

= 1−Φ

(
κ∗
(
st,
(

R, (k j)j
))

σ

)
. (29)

where Φ(·) is the c.d.f for the standard normal distribution. Let h(st) be the
haircut for newly issued repo contracts and H(st) denotes the aggregate aver-
age haircut rate in the economy. They are defined by

h(st) = 1−
f ∗
(

st, (R∗, k∗j )
)
· B̄

∑j pj(st)k∗j (st)
. (30)

H(st) = 1− B(st+1)

∑j pj(st)k∗j (st)
. (31)

If parameters satisfy the following condition, It is confirmed that the par-
tial equilibrium on the repo market is unique.

Assumption 1. Suppose SC( f ) is differentiable with respect to f and

σ

σ2
0 + σ2

≤
√

2π

1− ρh(1− β)
· inf

f∈[0,1]

{
1

ϕ · SC′( f )

}
. (32)
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Assumption 1 requires the relative noise of the idiosyncratic component
of ui,t is small enough compared with the noise of the aggregate component.
The intuition is the following. A smaller LHS implies that, if a lender observes
a higher realization of ui,t, his posterior belief about the aggregate compo-
nent µt increases sufficiently such that his private utility indeed ranks lower
among all lenders. Thus, the likelihood that other lenders will run on the
buyer becomes very low. The aggregate component µt essentially coordinated
lenders towards an equilibrium without the run. This coordination is a force
that works against the equilibrium multiplicity. Not surprisingly, the upper
bound on the RHS depends on the level of strategic complementarity. For ex-
ample, consider an extreme case that ϕ → +∞. In this case, if f drops a little
bit, since SC′( f ) > 0, the utility for a lender choosing repo drops to −∞. As
a consequence, there does not exist any parameter pair σ and σ0 that satisfies
the assumption 1.

A sketch of the argument is the following. Notice that ui,t is normally
distributed. Hence, there exist, lenders, who will always reject the repo con-
tract and who will always accept the repo contract. I say such lenders are in
the dominance region. Since lenders are strategically complementary to each
other, I expect that beginning from the two dominance regions, no matter how
small they are, the contagion effect iteratively enlarges the two regions until
they agree with each other. As a consequence, similar to Morris and Shin
(2001), the only symmetric strategy surviving the iterated deletion of strictly
dominated strategies is characterized by a threshold value. I delegate the de-
tailed proof of this result to the appendix C. I summarize the main findings
with the following propositions.

Proposition 3. Suppose the assumption 1 holds. For any repo contract
(

R, (k j)j
)
,

taking as given the aggregate state st and its transition function, an asset market
partial equilibrium Θ(st, p) and Γ(st, p), there exists an unique partial equilibrium
on the repo market.

The equilibrium threshold function κ∗
(
st,
(

R, (k j)j
))

solves the following
equation

0 =
R + κ∗

1− (1− β)ρh +
∫

R
ϕ · SC

(
f̃ (x, κ∗)

)
dΦ(x)

+ ρh
{

∑
j

Et
[
vl

j(st+1)
]
k j + Et

[
vl

π(st+1)
]}

, (33)
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where f̃ (x, κ∗) is defined by

f̃ (x, κ∗) = 1−Φ

κ∗ − x
√

σ2·σ2
0

σ2+σ2
0
− σ2

0 ·κ∗
σ2+σ2

0

σ

 , (34)

and Φ(x) denotes the CDF of standard Normal distribution.

4.3 General Equilibrium

Finally, I define the general equilibrium in the economy. It is a Markov Perfect
Equilibrium with the payoff-relevant state st.

Definition 3. General equilibrium is a tuple of functions{
{Vs

j (st)}j, Θ(st, p), Γ(st, p), F∗(st, p), λ(st), κ∗(·),
(

R∗(st), (k∗j (st))j

)}
and a transition function T(st+1|st) for aggregate states such that, at every state st:

1. Given T(st+1|st) and λ(st),
(
{Vs

j (st)}j, Θ(st, p), Γ(st, p),F∗(st, p)
)

is a par-
tial equilibrium on asset market in definition 1;

2. Given T(st+1|st), Θ(st, p), Γ(st, p) and
(

R∗(st), (k∗j (st))j
)
, κ∗(·) is a partial

equilibrium on the repo market as in definition 2;

3. Given f (·) implied from κ∗(·) defined in (29),
(

R∗(st), (k∗j (st))j
)

solves the
optimal repo contract problem in problem 1; and given Θ(st, p) and Γ(st, p),
λ(st) coincides with the optimal value of buyer’s asset investment problem in
problem 2;

4. Cash(st, NR∗) defined in (11) satisfy

∑
j

pj(st)θj(st)Mj = Cash(st, NR∗); (35)

5. T(st+1|st) coincides with law of motions (18) and (22).
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5 Calibration

5.1 Functional Forms

There are three functional forms that need to be specified for the calibration:
the default probability π(Cash) as a function of Cash, the fire sale probability
Pr(θ) as a function of the market liquidity θ, and the strategic complementar-
ity term in lender’s utility SC( f ) as a function of f , which is the fraction of
lenders who choose the repo contract.

Let Cash be a buyer’s available cash balance. Suppose the notation [y]+

represents the non-negative part of y and [y]− refers to the non-positive part
of y. I assume

π(Cash) = max
{

ε− 1 + eη·[Cash]+ + 1− e−η·[Cash]− , 0
}

,

where ε > 0 and η < 0. Clearly, the function π(Cash) is S-shaped, contin-
uously differentiable, and decreasing in Cash. Both parameters have imme-
diate economic implications: ε = π(0) anchors the level of π and η controls
the derivative of π with respect to Cash. Notice that when η is very small,
the function π is close to a linear function around 0 with intercept ε and slope
η. One micro-foundations for this functional form is the following. Since my
model only focuses on the repo liability and its associated collateral assets,
Cash < 0 does not necessarily imply buyers, large dealer banks, in reality, will
default. They can find other resources outside the repo market. For example,
they may get revenues from financial services, derivative trading, and even
commercial banking services, etc. However, it is without any doubt that the
larger the cash gap is, the harder for buyers to get it from other places. If the
arrival of external resources of cash follows the Poisson process and the rate is
linear in the cash gap, the default probability will be the one I have illustrated
above.

Next, suppose the market liquidity for an asset is θ. I assume a lender has
to fire sale the asset with the probability

Pr(θ) = 1− ν3

{1 + ν4 · exp(−ν2(θ − ν1))}1/ν4
,

where νj > 0 for all j = 1, ..., 4. This is the generalized logistic function, which
is S-shaped, continuously differentiable and decreasing in θ. ν1 controls in-
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flection point of Pr, ν2 represents the upper bound of the slope, ν3 illustrates
the asymptotic upper bound of Pr; and ν4 is a shape parameter.

Finally, I specify the SC( f ) as follows

SC( f ) = ln
(

f
f̄

)
· 1( f ≥ f ) + 1( f < f ) ·

{
f̄
f
· f + ln

(
f / f̄

)
− f̄

}
,

where f and f̄ are two parameters such that 0 < f < f̄ < 1 and f is small
enough. The second term above is introduced to eliminate the possible tech-
nical difficulties due to the divergence of ln(·) when f is small while main-
taining the continuous differentiability of the function SC( f ). The economic
implication of the function is the following. A lender’s disutility of choosing
repo contract rises exponentially when a smaller fraction of other lenders ac-
cept the repo offer, compared with a benchmark fraction f̄ . This is consistent
with the literature that emphasizes the contagion effect/network externality
among lenders during a run.

5.2 Directly Assigned Parameters

Parameters are divided into two groups. A group that clearly corresponds to
an observable measure or parameters that can be normalized without loss of
generality. And another group of “deep parameters” that need to be estimated
carefully. In this subsection, I consider the first group of parameters. The
length of the period in the model is one week.

Table 1 reports the value and calibration targets of directly assigned pa-
rameters. The discount factor ρh = 0.98 is nonstandard.15 The reason for
choosing such a low discount factor is the following. As argued in Stanton
and Wallace (2011), ABX prices16 in 2007-2009 are not consistent with any rea-
sonable mortgage default and recovery rate. Consider a back-of-envelop cal-
culation of the ABX.HE CDS. Let P be the fair price of the default insurance,
EL be the per dollar expected loss of an average subprime mortgage. I have

EL ' D(1− Rec)
1− ρh + 1−

(
ρh
)L

,

15A standard weekly discount factor calculated from the LIBOR rate should be around
0.999.

16It is a synthetic tradable index referencing the CDS of a basket of subprime mortgage-
backed securities constructed by IHS Markit.

29



where D represents the periodic default probability, Rec denotes the recovery
rate of default loans, and L is the delay of pre-payment (in weeks) due to the
difficulty of re-financing. Suppose the size of all subordination tranches is S. I
obtain

1− P = max
{

EL− S
1− S

, 0
}

. (36)

Given a standard ρh value, Stanton and Wallace (2011) find that the P calcu-
lated from ABX index implies EL ≥ 1. That is, the market expects the dis-
counted sum of losses exceeds the principal. They use this calculation as evi-
dence that the ABX index is not correctly priced. I view it in a different way.
Conditional on that the market expect a reasonable default rate D and histor-
ical recovery rate Rec, an extremely low P can come about if the discount fac-
tor ρh is very low17. The low ρh captures the potential capital constraints and
the holding cost, etc. of buyers. None of these factors are endogenous in my
model, so I use a low ρh as a shortcut way to control them. Consistent with my
view, recent literature like Saleuddin and Jansson (2021) econometrically con-
firms that fundamental-driven components can explain the ABX index drop
in 2007-2009.

Other parameters are standard. All calculations are straightforward ex-
cept for B̄. Notice that f̄ is chosen to be 0.5 for convenience. I assume that
before the crisis, the fraction of lenders accepting repo contracts is 0.5. So
given the Total Liability implied from the initial state (representing the pre-
crisis level) of the simulation, I can calculate B̄ = β × Total Liability ÷ 1

2 =

1763.85. The construction of the initial state will be elaborated in section 6.1.
Also, notice that ω · δ2 is not calibrated separately since they always show
together in my model.

5.3 Three Factors

Now turn to the “deep parameters” that discipline the price factor, the liquid-
ity factor, and the run factor. I start from the price factor. The key parameters
are the support and the transition matrix of the δt,1 process. They reflect the
quality change of the low type assets. As illustrated in (36), the change of the
ABX index indicates the present value changes of expected write-downs and

17For example, consider the following parameters. Suppose that D = 0.25, Rec = 0.4,
P = 0.3, S = 0.38, and L = 52. The implied ρh = 52

√
0.336 ' 0.98.
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Table 1: Directly Assigned Parameters

Parameter Target Value Source

ρh Exogenously
Assigned 0.98 irregularity in ABX

β
Average length
of repo contract:

6 weeks
1/6 ICMA survey

α
Average length

of RMBS:
216 weeks

1/216 Malkhozov et al. (2016)

J
Loss distribution

of RMBS:
bi-modal

2 Ospina and Uhlig (2018)

ω · δ2 Normalization 1 none

B̄
Trading volume of

RMBS
before crisis

1763.85 Ospina and Uhlig (2018)

f̄ Normalization 0.5 For convenience
f Small enough 0.2 none

shortfalls of the underlying RMBS. Therefore, I can use it to calibrate the δt,1

process in my model. ABX indices for all ratings and all RMBS baskets are
highly correlated and behave similarly in 2006-2009. Therefore, I choose the
indices for ABX.HE-2007-01 with AAA credit rating without loss of generality.
The support and the transition matrix for δt,1 is estimated with the following
procedure. First of all, I grid the range of the index observations evenly into
10 discrete points, denoted as δt,1(k) for k = 1, ..., 10. This will be the support
for δt,1. In the next step, each observation is approximated by the closest grid.
Conditional on a grid k, I can calculate the empirical frequency F(k, k′) that
the observation transit from the grid k to other grids k′. Using F(k, k′) for all k,
I can construct the transition matrix of δt+1,1|δt,1. Since most observations are
in the crisis time, there are some grids that only go down. This may bias the
result in my model since it implies a multiplicity of recurrent families of the
Markov process, making some of the δt,1 drop being permanent. I make one
modification on F(k, k′) to fix this issue. For those grid k /∈ {1, 10} and only
has downward observations, I assume E(δt+1,1|δt,1(k)) = δt,1(k). The idea is
inclined to the efficient market hypothesis. Table 3 reports the final result.

All remaining parameters are calibrated using the standard simulated
method of moments (SMM). In the following, I discuss the targets used to
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identify these parameters first and then elaborate on the procedures of SMM
in the next section. Consider the parameters related to the liquidity factor.
The most important parameters are the distribution of asset supplies:

(
Mj
)

j.
I target the fact in Ospina and Uhlig (2018) that for assets issued up until
2008, nearly 80% of all AAA rated RMBS suffers losses less than 5%. That
is, among asset stocks hold by buyers up to 2008, 80% of them are of high
type. {ρl, ν1, ..., ν4} are estimated by matching the H(st) in my model with
the haircut path18 depicted in Gorton and Metrick (2012). The intuition is that
ρl19 determines the seller’s holding value of the asset, which is assumed to
be the fire-sale price when lenders liquidate collaterals. ν1, ..., ν4 control the
probability of a fire sale event, therefore having a direct impact on the haircut
rates. {η, ε} are important for the default probability of buyers. Following the
literature, I use the LIB-OIS rate as an approximation of the default risk.

Finally, I consider parameters related to the run factor. Unfortunately,
none of {ϕ, σ0, σ} have measurable counterparts in the data. I calibrate them
indirectly. The intuition is the following. From some manipulations of the
equation (33), the equilibrium repo rate can be represented by the sum of four
terms:

−R
1− ρh(1− β)

= ρh ·
{

∑
j

Et
[
vl

j(st+1)
]
k∗j + Et

[
vl

π(st+1)
]}

+ ϕ · Υ( σ

σ0
, f ∗t ) + σ ·Φ−1(1− f ∗t ), (37)

where Υ( σ
σ0

, f ∗t ) is a known function. The first term connects to the over-
collateralization of a repo contract. It negatively affects the repo rate and is
disciplined by the haircut path in the target. The second term relates to the
default risk of buyers and is positively correlated with the repo rate. This
term is accounted for by targeting the LIB-OIS rate. The third term reflects
the strategic complementarity among lenders and the fourth term is about the
heterogeneity of lenders’ private utilities. With the simulated path for st, k∗t,j
and f ∗t , I target the average repo rate associated with RMBS collateral docu-
mented in Gorton and Metrick (2012) in three periods: the first half of 2007, the
second half of 2007 and 2008. From equation (37), these targets should contain
information of {ϕ, σ0, σ}. Since the simulation is built on the uniqueness of
the repo market equilibrium , during the estimation, σ0 and σ are restricted to

18Digitalized by the WebPlotDigitizer and reproduced by the author.
19Similar with ρh, the discount factor of sellers may also contain other terms like the asset

holding cost or regulatory burdens.
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satisfy the assumption 1. The calibrated values are reported in table 2. Table 4
and table 5 illustrate the local sensitivity of the targeted moments with respect
to the benchmark calibration.

Table 2: Jointly Calibrated Parameters

Parameter Targets Value Source

M1 Loss Distribution
of AAA RMBS

0.1260 Ospina and Uhlig (2018)M2 1.2095

ρl

haircut
path

0.9613

Gorton and Metrick (2012)
ν1 0.0295
ν2 252.4297
ν3 0.9244
ν4 5.90e-8

η LIB-OIS spread -9.5246e-6 Bloomberg
ε 0.000347

ϕ Average repo
rate in three

periods

298.686
Gorton and Metrick (2012)σ 0.002808

σ0 0.5720
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6 Computation and Simulation

6.1 The Simulation Method

I delegate the detailed description of the computation method to appendix
D.1. Given a numerically solved general equilibrium, I describe the simula-
tion method. The time t = 0 is the first week of January 2007 and the simu-
lation ends at the third week of November 2008, a total of 99 periods. Given
an equilibrium, a simulated path is fixed by two things. One is the exogenous
shock path containing µt and δt,1 for all t and the other is the initial endoge-
nous state (B0, K0,1, K0,2). As mentioned in the section 3.3, I use a realization
that µt ≡ 0 for the aggregate component of random utilities. δt,1 path is ob-
tained from approximating the true ABX time series by the grids δt,1(k) for
k = 1, ..., 10 defined in the previous section.

Instead of taking the common approach that using the steady-state20 as
candidate for endogenous initial state, I did something different. The reason
is the following. Since I assume agents have rational expectations on the evo-
lution of st+1|st, they are aware with the Markov process δt,1 and its transition
matrix. In any steady state, however, agents believe that δt,1 is a constant. If I
use the steady-state as the initial state, at time 1, I should observe an immedi-
ate change in all equilibrium objects even if the realization of δt,1 = δt,0. This
is generated from the arrival of information about the δt,1 process. That large
initial change is not observed in the data.

To get (B0, K0,1, K0,2), I use the endogenous state obtained from simulat-
ing the equilibrium path with long enough δt,1 = δ̄1 realizations. Numerical
tests suggest that the state I obtained from the above procedure is not sensi-
tive to where I start from. Though it is not the goal of this paper, the model is
able to generate an acute rise in both the repo issuance and the RMBS stocks
if I start from a low level of repo liability and asset holdings. That is, from
the perspective of this model, the structural banking boom before 2007 is con-
sistent with rational expectations and is not necessarily associated with asset
bubbles.

Policy functions and value functions off the grids are calculated by linear
interpolations. I check errors of such interpolations and find they are very
small. Expectations with respect to the Gaussian distributions are computed
with Gauss–Hermite quadrature with 15 grid points.

20A steady-state is the equilibrium that δt,1 ≡ δ1 for some constant δ1.
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6.2 Results

In this subsection, I report the simulation result from the calibrated bench-
mark model and compare it with available data observations. First of all, the
table 6 compares the simulated moments and their targets. Considering my
model is parsimonious, it did reasonably well in fitness. Figure 4 illustrates
the fitness of the other two targeted paths: the shock path δt,1 and the average
haircut path Ht.

Table 6: Simulated Moments VS Targets

Targets Simulation

Jan-June
2007

Jul-Dec
2007 2008 Jan-June

2007
Jul-Dec

2007 2008

Repo Rate 6.41bp 76.35bp 199.44bp 16.62bp 45.69bp 205.63bp
LIB-OIS 7.97bp 58.71bp 108.1bp 0bp 50.91bp 111.65bp

From the figure, the model misses a significant part of the haircut jump in
the September of 2008. It may come from several reasons. First of all, notice
that the calibrated shock path δt,1 after the September 2008 doesn’t change a
lot. Since the δt,1 shock is the only aggregate shock in my model, it is not sur-
prising that endogenous variables do not respond too much after that date.
Secondly, the timing of the large haircut jump matches perfectly with events
that may trigger panic on the market. On September 20th, Lehman Broth-
ers officially filed the bankruptcy. Notice that my model only contains the
fundamental-based run and has unique equilibrium on the repo market by
assumption 1. The under-performance of the model after the September 2008
may suggest the importance of the panic-based runs.

Figure 5 to 7 depict other important simulated equilibrium paths that are
not targeted in the calibration. Though these values are not targeted, they are
consistent with many pieces of evidence in the literature. For example, Gor-
ton et al. (2020) documented that, at the end of 2008, the total repo liability
dropped around 40% compared with its pre-crisis level. The trend of the av-
erage transaction price of RMBS by insurance companies reported in Merrill
et al. (2013) is very similar to my simulated path. Another sanity check is to
compare the pre-crisis level of the total issuance of the RMBS (1266.8 billions)
with the total issuance in 2007 and 2008 in Ospina and Uhlig (2018). My sim-
ulated path produced that the relative total issuance of the RMBS in 2007 and
2008 are 897.09

1266.8 = 70.1% and 158.855
1266.8 = 12.5%, roughly in line with their data
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counterparts 75.8% and 8.4%.

7 Counter-factual Experiments

In this section, I conduct four counterfactual experiments to decompose the
price, the liquidity, and the run factors. In the first experiment, I solve the
equilibrium without asymmetric information friction on the asset market. The
equilibrium concept and the solution method are similar with the benchmark
model. Specifically, the partial equilibrium on the asset market implies

pNAI
j (st) =

ρhEt[vb,NAI
1 (st+1)]

λNAI(st)
, for all j ∈ {1, 2} (38)

θNAI
1 (st) = θNAI

2 (st) =
CashNAI(st)

∑j pNAI
j (st)Mj

. (39)

That is, the liquidity for both assets is the same and their quality differences
are completely compensated by the price gap. Notice that the liquidity of
both assets can still fluctuate in the equilibrium due to the aggregate demand
conditions. For the simulation, to be comparable, I start from the same ini-
tial state. Instead of only feeding in δt,1 path as what I do in the benchmark
model, I also injected the Kt,1, Kt,2 path obtained in the benchmark simulation.
The path of Bt is still endogenous. It isolates the long-run effect of liquidities
through asset accumulation. Otherwise, I would see an increase in the asset
stock during the crisis because the initial state of the simulation is not correctly
specified.

The second counterfactual experiment uncovers the contribution of the
run factor induced by the strategic complementarity among lenders, which
is controlled by the parameter ϕ. I solve the equilibrium with ϕ = 0 and
simulate it in the same way with the benchmark model. The third experi-
ment simply combines the first two. The gap between the result from this
experiment and the benchmark model contains the price factor and the gen-
eral equilibrium effect between two markets due to the endogenous balance
sheet dynamics. To further isolate the price factor, the fourth experiment as-
sumes away the stochastic movement of δt,1. That is, I calculate the simulated
path under the following conditions: (1) the shock path δt,1 ≡ δ0,1 for all t;
(2) Bt is endogenously determined but I use the Kt,1 and Kt,2 generated from
the benchmark model simulation; and (3) asset types are common knowledge
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Figure 4: Fitness of Targeted Variables

Figure 5: Simulated Path: State Variables st
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Figure 6: Simulated Path: Repo Market Variables

Figure 7: Simulated Path: Asset Market Variables
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and ϕ = 0.

The decomposition goes in the following way. Consider an interested
variable X. Suppose the simulated path of X in the benchmark simulation
is Xt and its data observation is XData

t . Let XNAI
t be the simulated path ob-

tained from the first experiment described above. I denote XNSC
t as the simu-

lated path generated from the second experiment. Let XP&G
t be the simulated

path of the third experiment. I assume the simulated path generated from the
fourth experiment is XGE

t . I obtain

Liquidity factor contribution = Xt − XNAI
t ;

Run factor contribution = Xt − XNSC
t ;

Price factor contribution = XP&G − XGE
t ;

General Equilibrium factor contribution = XGE
t ;

Residual = XData
t − Xt.

I consider the decomposition of three factors for the haircut path ht, the
total repo liability Bt, the repo rate R∗t , and the default probability path πt.
Figure 8 to 11 summarize the result.

Figure 8: Decomposition of Haircut Rate to Three factors
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Figure 9: Decomposition of Repo Rate to Three factors

Figure 10: Decomposition of Default Probability Rate to Three factors
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Figure 11: Decomposition of Repo Outstanding Drop to Three factors

The following results deserve special attention. Firstly, the liquidity dry-
ing up caused by asymmetric information plays a crucial role in every aspect
of the repo market crash. It explains 30%21 of the increase in haircut, 13% of
the drop in total repo outstanding, and a large part of the increase in repo
spread. Secondly, throughout the crisis, the fundamental-based run has a sig-
nificant and persistent effect on the repo rate but only a small effect on the
repo haircut. Thirdly, the general equilibrium effect generated from the in-
teractions between the RMBS market and the repo market explains 33% of
the drop in total repo outstanding. This result, in hindsight, confirms that it
is important to study the RMBS market and the repo market together rather
than separately. Fourthly, the price factor is the main reason for the default
probability surge in the early stage of the crisis.

It is useful to discuss why does the second result emerge, I revisit the
buyer’s optimal decision on the repo market in problem 1. It is obvious that
buyers utilize all their available assets as collateral. So the first constraint in
problem 1 is binding. The main trade-off for a buyer is between two contracts:
one with a higher repo spread, less collateral portfolio per unit repo contract,
and a larger issuance volume, and another with lower repo spread, more col-

21Measured by the ratio between the blue area and the total area. The following numbers
are calculated similarly.
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lateral portfolio per unit, and hence smaller issuance volume. Collateral port-
folio per unit of repo contract is bounded downward by C(st, (k∗j )j) ≥ 1. I
notice that this constraint is always binding on the simulated path. That is,
calibrated parameters suggest buyers always favor the first contract over the
second one in the above trade-off. Buyers cannot issue more repo contracts not
because they optimally choose to do so in exchange for a lower coupon rate,
but they are constrained by the accounting rules that assets have to be marked
to market. These accounting rules have nothing to do with the strategic com-
plementarity among lenders. Therefore it is natural that shutting down ϕ does
not influence the extensive margin of a repo contract, i.e. the haircut rate and
total issuance. This intuition is supported by literature on the fair value ac-
counting rule during crisis time such as Kolasinski (2011) and many papers
referenced therein.

8 Policy Implications

Policy implications are straightforward. Bailing out the troubled banks during
the great recession is not as costly as previously believed. My results support
various liquidity programs initiated by the FED during the crisis and predict
the effectiveness of those interventions in mitigating the increase of haircuts.
However, the second result in the previous section suggests that conventional
monetary policies are ineffective in easing the haircut surge. Federal fund rate
cuts increase the repo spread, which has little effect on the haircuts. Notice
that the ineffectiveness is independent of zero lower bounds.

My model is also able to analyze macro-prudential policies related to the
repo market. Suppose buyers carry exogenous cash reserve CR(st) when state
is st. And assume cash reserve cannot be consumed or used for investment.
They are only available when buyers’ new repo issuance and assets dividends
are not enough to cover the maturing repo liabilities. Let us denote the new
aggregate state as s̄t = (st, CR(st)). The equilibrium definition is an immedi-
ate generalization from the definition 3 with one modification22.

Cash(s̄t, NR∗) =

Cash(st, NR∗) if Cash(st, NR∗) > 0

min {CR(st) + Cash(st, NR∗), 0} otherwise
.

Let us denote a buyer family’s total issuance of repo contract after deducting

22Notice that if CR(st) ≡ 0, it coincides with definition 3.
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coupon payments as TR∗(st). I have

TR∗(st) =

(
1− R∗(st)

1− ρh(1− β)

)
· (1− π(st, NR∗(st))) · NR∗(st).

The following proposition uncovers the relationship of equilibrium between
the model with cash reserve and the benchmark model.

Assumption 2. TR∗(st) is continuous and decreasing in Bt for all st.

Proposition 4. Take a benchmark equilibrium in definition 3. Consider any element
of the benchmark equilibrium X(st). Suppose the assumption 2 holds. There exists
functions B∗(st) and B∗∗(st) such that X̄(s̄t) is the corresponding element of an
equilibrium for the economy with cash reserve CR(st), where

X̄(s̄t) =


X(st) if Bt ∈ [0, B∗(st))

X(s∗t ) if Bt ∈ [B∗(st), B∗∗(st))

X(s∗∗t ) if Bt ∈ [B∗∗(st),+∞)

,

and

s∗t =
(

B∗(st), (Kt,j)j, δt,1
)

s∗∗t =

(
Bt −

1
β

CR(st), (Kt,j)j, δt,1

)
.

Functions B∗(st) and B∗∗(st) are uniquely determined by

TR∗
(

B∗(st), (Kt,j)j, δt,1
)
+ (1−ω) ·∑

j
Kt,jδt,j = β · B∗(st)

and

B∗∗(st) = B∗(st) +
CR(st)

β
.

The proof is delegated to the appendix E. Direct computation of the equi-
librium with cash reserve might be difficult since the dimension of the state
space in the benchmark model is already high. Therefore proposition 4 is con-
venient. I can analytically construct the equilibrium with cash reserve from
the benchmark equilibrium if an easy-to-verify condition is satisfied. The in-
tuition is the following. Notice that CR(st) only enters the equilibrium indi-
rectly through the term Cash. So if s̄t and st imply the same Cash for buyers,
the two equilibrium are observational equivalent.
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9 Discussion

In the decomposition exercise, the contribution of each factor is calculated as-
suming the existence of policy interventions. It is also interesting to ask what
will happen if a certain policy is not implemented during the crisis. So it is
useful to discuss the robustness of the calibration method to different policy
responses. All calibration targets and simulations are within the time window
of January 2007 to December 2008. So I confine my discussion on interven-
tions implemented before 2009. US policymakers intervened in four major
ways in this time: fed funds interest rate cuts; liquidity programs to keep
the financial institution operating; guarantee programs to support the critical
funding markets for financial institutions; and conservatorship of systematic
institutions like Fannie and Freddie23.

I consider these policies one by one. An unexpected fed fund rate cut
translates to a one-time jump of R∗(st) in my model, which represents the
spread between the repo rate and the lender’s outside option. Since I target
the average R∗(st) for at least six months, the impact of such intervention
should be small. Among all liquidity programs24, TSLF and TALF are directly
related to the assets considered in my model (private-labeled RMBS). Though
announced in November 2008, TALF commenced operation in March 2009. So
it does not bias the calibration too much. TSLF is only open to primary deal-
ers, I expect it has a similar effect with PDCF. Both of these facilities alleviate
the pain of raising funds outside the repo market for buyers, pushing up the
value of η in my model. Guarantee programs related to Bear Stearns is one ex-
ample of how buyers fulfill their repo obligations when Cash < 0. To fix such
bias, I can introduce permanent shocks to η when policies are implemented.
Since the whole path of LIB-OIS spread is observable, these shocks are easily
identified with a similar calibration method in section 5.3. Other liquidity pro-
grams, guarantee programs, and conservatorship of systematic institutions do
not have a direct influence on my calibration strategy.

23See the programs archive summarized by the Federal Reserve Bank of New York.
24These include CPFF (Commercial Paper Funding Facility), LSAP (Large Scale Asset Pur-

chase), MMIFF (Money Market Investor Funding Facility), PDCF (Primary Dealer Credit Fa-
cility), TALF (Term Asset-Backed Securities Loan Facility), and TSLF (Term Security Lending
Facility).
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10 Concluding Remarks

Three factors are commonly believed to be important for the repo market
crash: price, liquidity, and run. In this paper, I constructed a parsimonious
model which integrated the RMBS market with asymmetric information and
the repo market with strategically complementary lenders. It nested these
three factors under a unified framework and tracked their interactions. I pro-
posed a simple concept of equilibrium and characterized its properties.

Beyond theoretically tracking the interactions of the three factors using
the structural model, I also quantitatively evaluate their contributions. The
model yielded three crucial results. First, besides the contribution of the price
factor, the liquidity drying up caused by asymmetric information plays a cru-
cial role in every aspect of the repo market crash. It explains 30% of the in-
crease in haircut, 13% of the drop in total repo outstanding, and a large part of
the increase in repo spread. Second, throughout the crisis, the fundamental-
based run significantly affects the repo rate but only has a small effect on the
repo haircut. Third, in addition to the three factors, the general equilibrium
effect generated from the interactions between the RMBS market and the repo
market explains 33% of the drop in total repo outstanding. I discussed the
policy implications of these findings.
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Appendices

A A Brief Review of the Shadow Banking System

Figure 12: A Simplified Model of Shadow Banking

Figure 12 shows a simplified model of ”shadow banking” in the issuance
of residential mortgages. In the first step, mortgages (either prime or sub-
prime) are issued by local banks or mortgage companies. Different from ”tra-
ditional banking”, these local institutions no longer hold mortgages on bal-
ance sheets until their maturities. Instead, they package mortgages; sell these
pools to dealer banks, and use proceedings to finance new issuance. The
second step is conducted by dealer banks. They collect thousands of mort-
gages from primary originators in different locations all over the country.
The idea is that this pooling process can eliminate or at least significantly re-
duce the idiosyncratic shocks of local housing markets. Then they transfer
these pools to off-balance sheet vehicles, such as SPVs (special purpose vehi-
cles) and RMBS (residential mortgage-backed security) trust. SPVs and RMBS
trust are not operating entities in the usual context. They are robot compa-
nies (without employees or physical capital) with a set of pre-specified rules
to fulfill a special purpose, typically to finish the securitization process and
they are ”bankruptcy free”(not legally applicable to bankruptcy laws). In
the next step, off-balance sheet vehicles slice the entire expected cash flow
from mortgage pools into different debt securities with a hierarchy on the se-
niority. That is, senior debt holders will be paid before the subordinate debt
holders. As argued by Li (2019), this tranching and securitization practice
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mitigates the adverse selection and improves the allocative efficiency in the
market. The cash received from selling RMBS bonds is transferred back to the
dealer bank, which is used to buy mortgage pools in the future. The fourth
step is similar to the third step. It is another round of pooling, tranching, and
securitization. SPVs sell RMBS tranches to CDO (Collateralized Debt Obli-
gation) issuers. CDO issuers then combine these RMBS tranches with other
assets like credit card receivables, student loans, and auto loans, etc into a
large cash pool. Still, pooling is aimed to hedge the risk from housing markets
and other markets. They slice and issue CDO tranches backed by this cash
pool. Proceedings are used to buy RMBS tranches for issuing future CDOs.
The last link of the chain is implemented by another group of off-balance
sheet vehicles: the SIVs (special investment vehicles), ABCP (asset-backed
commercial paper) conduits, CDO put providers and SIV Lites. I will not
distinguish these different institutions in this paper, but rather focus on the
similar role they have played in the shadow banking system. They are similar
in the following sense. (1) They are actively managed by a manager (therefore
different from SPVs). (2) They invest in a portfolio of long-term assets such
as the RMBS tranches and CDO tranches. (3) There exists a set of pre-defined
restrictions on the portfolio. Typically restrictions are on maturity, diversifi-
cation, risk exposure, the leverage rate and etc. (4) They are typically highly
leveraged. (5) They finance the purchase of portfolio by issuing short-term
debt – the repo agreement – to lenders like MMF (money market funds) on
the repo market. The repo agreement is a form of collateralized short-term
(the maturity varies from one day to a year) borrowing contract. The seller
of a repo contract borrows cash from the repo buyer, while at the same time
he transfers some assets to repo buyers as collateral. At maturity, if the repo
seller defaults, the repo buyer can keep the asset; otherwise, the ownership of
the asset transfers back to the borrower. Therefore, these institutions suffer a
liquidity mismatch. (6) They are bankruptcy-free. In summary, the SIVs are
”banks” in this shadow banking system. ”Depositors” save cash through repo
contracts or asset-backed commercial papers. ”Loan” is granted to originators
of mortgage issuers via CDO tranches and RMBS tranches which are created
by off-balance sheet vehicles.
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B Partial Equilibrium on Asset Market

Let S ≡ R+ ×R
J
+ × {δ1, ..., δ̄1} be the state space. Obviously S is a complete

separable metric space. Denote its usual σ-Algebra as S . Let T(S|st) : S×S 7→
[0, 1] be the exogenously given transition function for aggregate states, where
S ∈ S . According to the Kolmogorov extension theorem, there exists a unique
probability measure Pr on the measurable space (S∞,S∞) such that Pr(S|st)

coincide with T(S|st) for all S ∈ S and st ∈ S. With these notations, I state
the corresponding sequence form of problem Pj. To highlight the dependence
relationship, I sometimes separate the state st into two parts: δt,1 and λ(st).
Taking λ(st) as given, Vs

j (δt,1, λ(st)) is the solution to the following problem

max
θj(st+l),pj(st+l)

E
[ ∞

∑
l=0

[ l

∏
τ=0

(1−min{θj(st+l), 1})[ρl(1− α)]l

· {δt+l,j + min{θj(st+l), 1}pj(st+l)}
]]

(40)

with constraint

λ(st+l) ≤
min{θ−1

j (st+l), 1} · ρhEt+l[vb
j (st+l+1)]

pj(st+l)
, (41)

and an incentive compatibility constraint that for all j′ < j, type j′ seller has
no incentive to mimic the policy {θj(·), pj(·)}. Note that there is a gap be-
tween this constraint and the one stated in equation (26). Essentially, (26) only
excludes the “one-shot deviations” by type j′ sellers. However, thanks to the
one shot deviation principle, constraint (26) is sufficient. I restate it here,

1
1− α

Vs
j′(δt+l,1, λ(st+l)) ≥ δt+l,j′ + min{θj(st+l), 1}pj(st+l)

+ ρl(1−min{θj(st+l), 1})Et+l
[
Vs

j′(δt+l+1,1, λ(st+l+1))
]
. (42)

where Vs
j′(·) for j

′
< j are defined recursively by mathematical induction. The

expectation is well-defined in the probability space (S∞,S∞, Pr). For all st, let
us define λ̄(st) as

λ̄(st) ≡
ρhEt[vb

1(δt+1,1)]

(1− α)ρlEt

[
δt+1,1 +

ρhEt+1[vb
1(st+2)]

λ(st+1)

] ;
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and λ(st) ≡ max
{

1, ρhEt[λ(st+1)]
}

.

Lemma 1. Suppose {Vs
j (·)}

J
j=1 are solutions to problem {Pj}J

j=1 as defined in prob-
lem 3. I have Vs

1 (·) < Vs
2 (·) <, ...,< Vs

J (·).

Proof. First, from the standard equivalence relationship between the recur-
sive form problem and the sequence form problem, I observe that problem
Pj defined in problem 3 is equivalent to the problem (40). Therefore, it is
sufficient to prove that, solutions to (40) with constraints (41) and (42) satisfy
Vs

1 (·) < Vs
2 (·) <, ...,< Vs

J (·).

I proceed by mathematical induction. For j = 1, there is nothing to prove.
Suppose that for j′ ≤ j− 1, the condition is true. I show that Vs

j−1(·) < Vs
j (·).

Let {θj−1(·), pj−1(·)} be the optimal policy chosen by type j− 1 sellers. I verify
that, this policy satisfies both the constraint (41) and (42).

For the constraint (41), note that {θj−1(·), pj−1(·)} satisfies a similar con-
straint in problem Pj−1, which suggests, for any state st+l,

λ(st+l) ≤
min{θ−1

j−1(st+l), 1} · ρhEt+l[vb
j−1(st+l+1)]

pj−1(st+l)

<
min{θ−1

j−1(st+l), 1} · ρhEt+l[vb
j (st+l+1)]

pj−1(st+l)
.

The second inequality comes from the fact that

Et+l[vb
j−1(st+l+1)] < Et+l[vb

j (st+l+1)],

which is obvious from their definitions in equation (17).

For the constraint (42), note that from the (recursive-form) definition of
Vs

j−1(·), I obtain

1
1− α

Vs
j−1(δt+l,1, λ(st+l)) = δt+l,j−1 + min{θj−1(st+l), 1}pj−1(st+l)

+ ρl(1−min{θj−1(st+l), 1})Et+l
[
Vs

j−1(δt+l+1,1, λ(st+l+1))
]
.

Hence, the incentive compatibility constraint between type j − 1 and type j
obviously holds. I move to IC constraints between type j′ < j− 1 sellers and
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type j sellers. Recall that {θj−1(·), pj−1(·)} is optimal, thus naturally feasible
in Pj−1. IC constraints in Pj−1 implies that, for all j′ < j− 1,

1
1− α

Vs
j′(δt+l,1, λ(st+l)) ≥ δt+l,j′ + min{θj−1(st+l), 1}pj−1(st+l)

+ ρl(1−min{θj−1(st+l), 1})Et+l
[
Vs

j′(δt+l+1,1, λ(st+l+1))
]
,

which is what I want to prove. Thus it is feasible for type j sellers to take
{θj−1(·), pj−1(·)}. This implies

Vs
j (δt+l,1, λ(st+l))

≥ E
[ ∞

∑
l=0

[ l

∏
τ=0

(1−min{θj−1(st+τ), 1})[ρl(1− α)]l

· {δt+l,j + min{θj−1(st+l), 1}pj−1(st+l)}
]]

> E
[ ∞

∑
l=0

[ l

∏
τ=0

(1−min{θj−1(st+τ)), 1})[ρl(1− α)]l

· {δt+l,j−1 + min{θj−1(st+l), 1}pj−1(st+l)}
]]

= Vs
j−1(δt+l,1, λ(st+l)).

The first inequality holds since I have dropped the max operator in (40). The
strict inequality comes from the condition δt+l,j > δt+l,j−1 for all state st+l.
The third equality comes from the (sequence-form) definition of Vs

j−1(·). This
completes the proof.

Lemma 2. For any state st, suppose λ(st) ≤ λ(st) ≤ λ̄(st). I can establish the
following upper bound for Vs

1 (st),

Vs
1 (st) ≤ (1− α){δt,1 +

ρhEt[vb
1(st+1)]

λ(st)
}.

Proof. Let θ1(st) and p1(st) be the optimal policy function that achieves Vs
1 (st).

First, I argue that, for all st,

p1(st) ≤
ρhEt[vb

1(st+1)]

λ(st)
.
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From the constraint (25) in problem P1, I obtain

p1(st) ≤
min{θ−1

1 (st), 1}ρhEt[vb
1(st+1)]

λ(st)

≤
ρhEt[vb

1(st+1)]

λ(st)
(43)

Since Vs
1 (st) is linear in θ1(st), whenever θ1(st) > 0, I have

Vs
1 (st) = (1− α)[δt,1 + p1(st)] ≤ (1− α)[δt,1 +

ρhEt[vb
1(st+1)]

λ(st)
],

which is the result I want. The only case left is that sellers hold the asset
forever, i.e Et[θ1(st+l)] = 0 for all l ≥ 1. However, from the sequence form
definition of Vs

1 (st), I obtain

Vs
1 (st) = E

[ ∞

∑
l=0

[ρl(1− α)]lδt+l,1

]

= lim
L→∞

{
E
[ L

∑
l=0

[ρl(1− α)]lδt+l,1

]
+

[ρh]LEt+L[vb
1(st+1+L)]

λ̄(st+L+1)

}

≤ (1− α)[δt,1 +
ρhEt[vb

1(st+1)]

λ̄(st)
]

≤ (1− α)[δt,1 +
ρhEt[vb

1(st+1)]

λ(st)
],

where the inequality in the third line comes from repeatedly using λ(st) ≤
λ̄(st) and iterating λ̄(st) forward. This completes the proof.

Lemma 3. For any state st and all j, suppose that λ(st) < λ̄(st), the constraint (25)
is binding.

Proof. I prove by contradiction. Consider the case j = 1. Let {θ1(·), p1(·)} be
its optimal policy. Suppose that (25) is slack. Note that (25) is the only con-
straint in problem P1. I construct an alternative policy {θ1(·), p̃1(·)} such that
it keeps the same probability of trade at all states; increases the selling price at
state st so that (25) is binding; and at all other states s′t 6= st, p̃1(s′t) = p1(st).
By construction, p1(st) < p̃1(st). Substituting this back to (40), I discover that
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the value induced by the alternative policy is weakly better than the value
from {θ1(·), p1(·)}. To obtain the strict inequality for a contradiction, I verify
that θ1(st) > 0. Since Vs

1 (st) is linear in θ1(st), it is sufficient to compare two
alternative plans at state st: (0, p̃1(st)) and (1, p̃1(st)). I have

δt,1 + 1 · ρlEt[Vs
1 (st+1)]

≤ δt,1 + ρl(1− α)E

[
δt+1,1 +

ρhEt+1[vb
1(δt+2,1)]

λ(st+1)

]

= δt,1 +
ρhEt[vb

1(δt+1,1)]

λ̄(st)

< δt,1 +
ρhEt[vb

1(δt+1,1)]

λ(st)

= δt,1 + p̃1(st). (44)

Here the first line is the payoff (multiply by 1
1−α ) for type 1 seller who adopts

the policy (0, p̃1(st)) at st. The inequality in the second line comes from the re-
sult in Lemma 2 for state st+1. The equality in the third line uses the definition
of λ̄(st). The strict inequality in the fourth line of (44) is from the condition that
λ(st+1) < λ̄(st). The last line is the seller’s value of using policy (1, p̃1(st)).
This proves the the claim for case j = 1.

Now I focus on the case j > 1. Suppose that (25) is slack. Let {θj(·), pj(·)}
be its optimal policy. Consider an alternative policy function {θ̃j(·), p̃j(·)}
which (i) coincides with the original optimal policy function on every state
other than st; and (ii) has a slightly higher price but lower trading probability
at st such that (41) holds with equality and

min{θj(st), 1}
[

pj(st)− ρlEt[Vs
j−1(st+1)]

]
(45)

=min{θ̃j(st), 1}
[

p̃j(st)− ρlEt[Vs
j−1(st+1)]

]
. (46)

I first prove that {θ̃j(·), p̃j(·)} is feasible. By construction, type j− 1 seller is
indifferent between her own policy and {θ̃j(·), p̃j(·)}. I only need to check that
IC constraints hold for j′ < j− 1. Suppose for some j′, (42) is violated

Vs
j′(δt,1, λ(st)) < δt,j′ + min{θ̃j(st), 1} p̃j(st)

+ ρl(1−min{θ̃j(st), 1})Et
[
Vs

j′(δt+1,1, λ(st+1))
]
.

57



Since the IC constraint between type j− 1 and type j holds for policy {θj(·), pj(·)},
I have

Vs
j′(δt,1, λ(st)) ≥ δt,j′ + min{θj(st), 1}pj(st)

+ ρl(1−min{θj(st), 1})Et
[
Vs

j′(δt+1,1, λ(st+1))
]
.

Combining the above two inequalities, and substituting (45) in, I obtain(
min{θj(st), 1} −min{θ̃j(st), 1}

)
ρlEt[Vs

j′ −Vs
j−1] > 0.

However, as proved in the lemma 1, Et[Vs
j′ − Vs

j−1] < 0 and by construction(
min{θj(st+l), 1} −min{θ̃j(st+l), 1}

)
> 0. This is a contradiction.

Hence, {θ̃j(·), p̃j(·)} is feasible. Again, from the single crossing condition
implied by Lemma 1, I obtain

min{θ1(st), 1}
[

pj(st)− ρlEt[Vs
j (st+1)]

]
<min{θ̃1(st), 1}

[
p̃j(st)− ρlEt[Vs

j (st+1)]
]
,

which means type j seller is strictly better off with the alternative policy func-
tion. Thus I get a contradiction. This completes the proof.

Lemma 4. For any state st, suppose that λ(st) < λ(st) < λ̄(st), the optimal policy
satisfies (i) θ1(st) = 1, θj(st) ≤ 1 for all j > 1; and (ii) pj(st) < pj′(st) for all j < j′.

Proof. Let us focus on (i). I consider θ1(st) first. Notice that there is only one
constraint (25) and as proved by Lemma 3, it is binding. Substitute this con-
straint back to the objective function, I obtain

Vs
1 (δt,1, λ(st)) = max

θ1(st)

{
δt,1 + min{θ1(st), 1}

[
p1(st)− ρlEt

[
Vs

1 (·)
]]

+ ρlEt
[
Vs

1 (δt+1,1, λ(st+1))
]}

(1− α), (47)

where the price p1(st) is given by (43). I argue that the optimal policy θ1(st) =

1. Consider the optimization problem (47) in two separated intervals: [0, 1]
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and [1, ∞). If θ1(st) ∈ [0, 1], the price p1(st) simplifies to

p1(st) =
ρhEt[vb

1(st+1)]

λ(st)

>
ρhEt[vb

1(st+1)]

λ̄(st)

= ρl(1− α)Et

[
δt+1,1 +

ρhEt+1[vb
1(st+2)]

λ(st+1)

]

≥ ρlEt[Vs
1 (st+1)],

where the strict inequality uses the condition λ(st) < λ̄(st), and the inequality
in the last line applies the result from Lemma 2. Since the objective function is
linear in θ1(st), the above inequality suggests θ1(st) = 1 is optimal within the
range [0,1]. Suppose that θ1(st) ≥ 1, the objective simplifies to (1− α)[δt,1 +

p1(st)]. Recall that (43) is decreasing in θ1(st) under the condition that

λ(st) > λ(st) ≥ ρhEt[λ(st+1)].

That is, p1(st) is decreasing in θ1(st). Thus, θ1(st) = 1 maximized the objective
within [1, ∞). Therefore, I have proved the optimal θ1(st) = 1.

Now I look at the case j > 1. I prove the desired result by contradiction.
Denote the optimal policy at state st as (θj(st), pj(st)). Suppose that θj(st) > 1.
Combining with the binding constraint (41) proved in lemma 3, the objective
function Vs

j (δt,1, λ(st)) reduces to (1− α) · [δt,j + pj(st)], where

pj(st) =
θ−1

j (st) · ρhEt[vb
j (st+1)]

λ(st)
,

and the incentive compatibility constraint between type 1 seller and type j
seller indicates

Vs
1 (δt,1, λ(st)) = (1− α)[δt,1 + p1(st)] ≥ (1− α)[δt,1 + pj(st)].

Thus, I have p1(st) ≥ pj(st). From the proof in the first part that θ1(st) = 1, I
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get

λ(st) =
ρhEt[vb

1(st+1)]

p1(st)
<

ρhEt[vb
2(st+1)]

p1(st)

≤
ρhEt[vb

j (st+1)]

pj(st)
. (48)

This illustrates that the alternative policy (1, pj(st)) is feasible and weakly bet-
ter than the optimal policy (θj(st), pj(st)). However, (48) states that constraint
(25) is slack for (1, pj(st)), which is a contradiction to the Lemma 3. This com-
pletes the proof of the first part.

Let us prove (ii). For j′ > j, according to Lemma 3 and the result in (i), I
obtain

pj′(st) =
ρhEt[vb

j′(st+1)]

λ(st)

>
ρhEt[vb

j (st+1)]

λ(st)
= pj(st).

This completes the proof.

Lemma 5. For any state st and all j > 1, suppose that λ(st) < λ(st) < λ̄(st), the
constraint (26) is binding between j and j− 1 and slack otherwise.

Proof. I separate the proof into two sub-cases: (i) (26) binds in problem P2,
and (ii) for problem Pj with j > 2, (26) binds between j and j− 1 and is slack
otherwise. Consider the problem P2 first. For a contradiction, suppose that
(26) is slack. Then I can prove θ2(st) = 1 by exact the same argument as the
first part of the proof in Lemma 4. This implies

p2(st) =
ρhEt[vb

2(st+1)]

λ(st)
>

ρhEt[vb
1(st+1)]

λ(st)
= p1(st).

However, the objective function reads

Vs
1 (st) = (1− α)[δt,1 + p1(st)] < (1− α)[δt,1 + p2(st)].

The incentive compatibility constraint is violated, which is a contradiction.
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Let us consider the problem Pj for j > 2. I proceed by mathematical
induction on j. Suppose the claim is true for all problem Pj′ with j′ ≤ j− 1.
First, let us restrict to the situation where the IC constraint between type j
and j− 2 is binding. From the induction hypothesis, the IC constraint is also
binding between type j− 1 and type j− 2 sellers, which implies

1
1− α

Vs
j−2(st) = δt,j−2 + θj−1(st)pj−1(st) + ρl(1− θj−1(st))Et

[
Vs

j−2(st+1)
]

= δt,j−2 + θj(st)pj(st) + ρl(1− θj(st))Et
[
Vs

j−2(st+1)
]
.

From Lemma 4, pj(st) > pj−1(st). I obtain θj−1(st) > θj(st). According to the
single crossing condition implied from Lemma 1, I get

1
1− α

Vs
j−1(st) = δt,j−1 + θj−1(st)pj−1(st) + ρl(1− θj−1(st))Et

[
Vs

j−1(st+1)
]

< δt,j−1 + θj(st)pj(st) + ρl(1− θj(st))Et
[
Vs

j−1(st+1)
]
,

which is a contradiction since it violates the IC constraint between type j− 1
and type j.

Next, suppose that the IC constraint between type j and j − k for 2 <

k ≤ j − 1 is binding. I can replicate the above proof by arguing that the IC
constraint between j− k and j− k+ 1 is binding, which leads to a contradiction
that the IC between j− k + 1 and j is violated. Thus, the only case left is that
the incentive compatibility constraints are slack between type j and all other
types j′ < j. The argument is exactly the same with that illustrated in the case
for problem P2: I establish that θj(st) = 1 and obtain a contradiction that the
IC between type 1 and type j is violated. This completes the proof.

Lemma 6. For any state st, assume that λ(st) < λ(st) < λ̄(st). If the function λ(st)

is continuous in st and the transition function of aggregate state satisfies the Feller
property, there exists a unique solution to problem Pj for all j. Moreover, functions(
Vs

j (st), pj(st), θj(st)
)

are all bounded and continuous in st.

Proof. I prove by mathematical induction. Consider the case forP1. According
to Lemma 1 to 5, I obtain θ1(st) = 1 and for all st,

p1(st) =
ρhEt[vb

1(st+1)]

λ(st)
.
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Substituting these back to the objective function, I obtain that Vs
1 (st) = (1−

α)[δt,1 + p1(st)], which is continuous and bounded.

Now suppose the claim is true for all j′ ≤ j − 1, I prove the existence
and uniqueness of solution to problem Pj. Let

(
Vs

j′(st), pj′(st), θj′(st)
)

be the
solution to Pj′ . From the binding constraints (25) and (26), I can solve

pj(st) =
ρhEt[vb

j (st+1)]

λ(st)
, (49)

θj(st) = θj−1(st) ·
{ pj−1(st)− ρlEt[Vs

j−1(st+1)]

pj(st)− ρlEt[Vs
j−1(st+1)]

}
. (50)

Substituting these back to the objective function, the Bellman equation for
Vs

j (st) is

Vs
j (st) =

{
δt,j + θj(st)

[
pj(st)− ρlEt

[
Vs

j (st+1)
]]

+ ρlEt
[
Vs

j (st+1)
]}

(1− α).

(51)

Denote B(S) as the space of all the bounded continuous functions mapping S

to R. Let d be a metric on B(S) generated by the sup norm. Thus (B(S), d) is a
complete metric space. Equation (51) maps an element of B(S) to itself. Obvi-
ously, the Bellman operator satisfies Blackwell’s sufficient condition. Hence it
is a contraction. According to the contraction mapping theorem, there exists a
unique fixed point that defines Vs

j (st).

This completes the proof.

Lemma 7. For any state st, assume that λ(st) < λ(st) < λ̄(st). If the function
λ(st) is continuous in st and the transition function of aggregate state satisfies the
Feller property, there exists a partial equilibrium on the asset market as defined in
definition 1.

Proof. Let
(
Vs

j (δt,1, λ(st)), pj(st), θj(st)
)

be the solution to problem Pj. I di-
rectly construct the partial equilibrium on the asset market. As suggested by
the notation, sellers value functions Vs

j (st) coincide with Vs
j (δt,1, λ(st)). De-

fine γj(st, p) = 1 if p ∈ [pj(st), pj+1(st)) for j ∈ {1, 2, ..., J − 1}; γ1(st, p) = 1
if p ∈ [0, p1(st)); and γJ(st, p) = 1 if p ∈ [pJ(st),+∞). Let F(st, p) be any
distribution function with support {p1, ..., pJ}. Let Θ(st, p) = ∞ for p < p1(st)
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and construct Θ(st, p) for p ≥ p1(st) as the following

Θ(st, p) =
J

∑
j=1

γj(st, p) · θj(st) ·
pj(st)− ρlEt[Vs

j (st+1)]

p− ρlEt[Vs
j (st+1)]

.

I check objects constructed above satisfy the equilibrium conditions in defini-
tion 1.

Equilibrium Beliefs: To simplify the illustration, let us consider the equilib-
rium beliefs condition first. Suppose Θ(st, p) < ∞ and γj(st, p) > 0. By
construction, I have p ∈ [pj(st), pj+1(st)) if 1 < j < J; p ∈ [0, p2(st)) if j = 1;
and p ∈ [pJ(st),+∞) if j = J. For the case 1 < j < J, it is sufficient to prove

Θ(st, p)
(

p− ρl ·Et[Vs
j (st+1)]

)
≥ Θ(st, p′)

(
p′ − ρl ·Et[Vs

j (st+1)]
)

(52)

for all p′ 6∈ [pj(st), pj+1(st)). Suppose p′ < pj(st). There exists a 1 ≤ j′ < j
such that p′ ∈ [pj′(st), pj′+1(st)). It implies

Θ(st, p′)
(

p′ − ρl ·Et[Vs
j′(st+1)]

)
= θj′(st)

(
pj′(st)− ρl ·Et[Vs

j′(st+1)]
)

= θj′+1(st)
(

pj′+1(st)− ρl ·Et[Vs
j′(st+1)]

)
,

where the first equality comes from the construction of Θ(st, p) function and
the second equality uses the binding IC constraint between type j′ and j′ + 1.
Thus, I obtain θj′+1(st) < Θ(st, p′) < θj′(st). From Lemma 1, I get

[θj′+1(st)−Θ(st, p′)] · ρl[Et[Vs
j′(st+1)]−Et[Vs

j (st+1)]
]
> 0.

Subtracting this inequality from the above equation,

Θ(st, p′)
(

p′ − ρl ·Et[Vs
j (st+1)]

)
≤ θj′+1(st)

(
pj′+1(st)− ρl ·Et[Vs

j (st+1)]
)

≤ θj(st)
(

pj(st)− ρl ·Et[Vs
j (st+1)]

)
= Θ(st, p)

(
p− ρl ·Et[Vs

j (st+1)]
)

.

The second inequality is due to the fact that, as proved in Lemma 1, θj′+1(st)

and pj′+1(st) are feasible for type j seller. The final equality is by definition of
Θ(st, p). This verifies (52) if p′ < pj(st).

The alternative case p′ > pj+1(st) is similar. There exists a j < j′ ≤ J such
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that p′ ∈ [pj′−1(st), pj′(st)). Following the definition of Θ(st, p′), I obtain

Θ(st, p′)
(

p′ − ρl ·Et[Vs
j′−1(st+1)]

)
= θj′−1(st)

(
pj′−1(st)− ρl ·Et[Vs

j′−1(st+1)]
)

.

This proves θj′−1(st) > Θ(st, p′), which implies

[θj′−1(st)−Θ(st, p′)] · ρl[Et[Vs
j′−1(st+1)]−Et[Vs

j (st+1)]
]
> 0.

Together with the IC constraint between type j and j′ − 1, I have

Θ(st, p′)
(

p′ − ρl ·Et[Vs
j (st+1)]

)
≤ θj′−1(st)

(
pj′−1(st)− ρl ·Et[Vs

j (st+1)]
)

≤ θj(st)
(

pj(st)− ρl ·Et[Vs
j (st+1)]

)
= Θ(st, p)

(
p− ρl ·Et[Vs

j (st+1)]
)

.

This proves what I want. For the case j = 1 and j = J, the proof is even simpler
since I only need to consider one-sided case p′ > p2(st) or p′ < pJ(st). They
are exactly the same with the above. Notice that seller’s optimality condition
follows immediately after the verification of equilibrium beliefs condition.

Active Markets: Now I verify the active markets condition. It is sufficient to
prove that pj(st) solves the maximization problem on the right hand side of
(19) given functions λ(st), Θ(st, p) and Γ(st, p). Recall that from Lemma 4 and
my construction, Θ(st, p) ≤ 1 for all p. Substituting Γ(st, p) back, for all p
such that γj(st, p) > 0 and Θ(st, p) < ∞, I have p ∈ [pj(st), pj+1(st)). Given
the construction F(st, p), it is sufficient to consider the simplified version of
rhs of (19):

max
p

[
∑

j

min{Θ−1(st, p), 1} · ρhEt[vb
j (st+1)]

p
γj(st, p)

]

= max
j

{
max

p∈[pj(st),pj+1(st))

ρhEt[vb
j (st+1)]

p

}

=
ρhEt[vb

j (st+1)]

pj(st)

= λ(st),

for all j ∈ {1, 2, ..., J}. This confirms the active markets condition.
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Other equilibrium condition are obviously satisfied. This completes the
proof.

Lemma 8. For any state st, assume that λ(st) < λ(st) < λ̄(st). Suppose the
function λ(st) is continuous in st and the transition function of aggregate state sat-
isfies the Feller property. Let {Vs

j (st)}J
j=1, Θ(st, p), Γ(st), and F(st, p) be a partial

equilibrium on the asset market. Then there exists a pj(st) for all j and st such that
γj(st, pj(st)) > 0, if Θ(st, pj(st)) > 0, then {pj(st), Θ(st, pj(st)), Vs

j (st)} is a
solution to problem Pj.

Proof. Fix any state st. From the consistency of supplies with beliefs condi-
tion, there exists a pj(st) such that γj(st, pj(st)) > 0 for all j. Suppose that
Θ(st, pj(st)) > 0. I denote this term as θj(st) hereafter. According to the equi-
librium beliefs condition, pj(st) solves the maximization problem on the right
hand side of (1) for seller j. As a preliminary, I first prove that Vs

j (st) > Vs
j′(st)

if j > j′. From the sequence form definition of Vs
j (st), I obtain the following

inequality. The first inequality holds since I have dropped the max operator
and injected a particular sub-market pj′(st) in (1) for seller j. The strict in-
equality comes from the fact that δt,j > δt,j′ for all t and j > j′. The equality in
the third line uses again the sequence form definition of Vs

j′(st) and the seller’s
optimality condition.

Vs
j (δt+l,1, λ(st+l))

≥ E
[ ∞

∑
l=0

[ l

∏
τ=0

(1−min{θj−1(st+τ), 1})[ρl(1− α)]l

· {δt+l,j + min{θj−1(st+l), 1}pj−1(st+l)}
]]

> E
[ ∞

∑
l=0

[ l

∏
τ=0

(1−min{θj−1(st+τ)), 1})[ρl(1− α)]l

· {δt+l,j−1 + min{θj−1(st+l), 1}pj−1(st+l)}
]]

= Vs
j−1(δt+l,1, λ(st+l)).

With this preliminary result, I first prove that the policy θj(st), pj(st) is feasible
for problem Pj.
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I check the constraint (25) first. Suppose, for a contradiction, that (25) is
violated for policy pair θj(st), pj(st). Since sub-market pj(st) is active, from
the buyer’s optimality condition, there must be pooling in this sub-market to
maintain (19). That is, there exists a j′ 6= j with γj′(st, pj(st)) > 0 such that

λ(st) <
min{θ−1

j (st), 1} · ρhEt[vb
j′(st+1)]

pj(st)

+ ρh(1−min{θ−1
j (st), 1}) ·Et[λ(st+1)].

I must have Et[vb
j′(st+1)] > Et[vb

j (st+1)]. This implies j′ > j. If θj(st) = ∞, the
above inequality degenerates to

λ(st) < ρh ·Et[λ(st+1)],

which is a contradiction to λ(st) > λ(st). Hence θj(st) < ∞. From the equi-
librium beliefs condition, compared with any p′ 6= pj(st), type j′ seller prefers
submarket pj(st), which suggests

min{θj(st), 1}(pj(st)− ρlEt[Vs
j′(st+1)])

≥min{Θ(st, p′), 1}(p′ − ρlEt[Vs
j′(st+1)]).

In particular, let us consider those submarket p′ > pj(st). The above inequal-
ity implies min{Θ(st, p′), 1} < min{θj(st), 1} < ∞. I claim that if γj′′(st, p′) >
0, I have j

′′ ≥ j′. To see this, consider the opposite case where j′′ < j′.
By the preliminary result I proved in the beginning of this Lemma, I obtain
Vs

j′′(st) < Vs
j′(st). Therefore, from the single crossing condition, I get

min{Θ(st, p′), 1}(p′ − ρlEt[Vs
j′′(st+1)])

<min{θj(st), 1}(pj(st)− ρlEt[Vs
j′′(st+1)]).

According to the equilibrium beliefs condition, γj′′(st, p′) = 0, which is a con-
tradiction. Thus, by deviating to submarket p′ that is slightly higher than
pj(st), the buyer expects that he would encounter sellers with at least type j′.
This delivers a strictly higher value than λ(st), which is a contradiction.

Now I verify the constraint (26) is satisfied by the policy pair θj(st) with
pj(st). This follows immediately from the seller’s optimality condition. Thus,
I have proved that θj(st), pj(st) is feasible for problem Pj.
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Suppose there exists a state st and another policy pair p′(st) with θ′(st)

satisfying the constraint (25) and (26), and they achieve the optimality of Pj

with a strictly higher payoff than Vs
j (st). From Lemma 4, I obtain that θ′(st) ≤

1. I derive a contradiction that buyers can deviate to a submarket p′′(st) <

p′(st) and achieve a strictly higher value than λ(st). First notice that for p′′(st)

close enough to p′(st), the policy pair p′′(st) with θ′(st) is feasible, and the
value attained by this policy is strictly higher than Vs

j (st). That is,

Vs
j (st) <

{
δt,j + θ′(st)

[
p′′(st)− ρlEt

[
Vs

j (st+1)
]]

+ ρl(1− θ′(st)) ·Et
[
Vs

j (st+1)
]}

(1− α),

with

λ(st) <
ρhEt[vb

j (st+1)]

p′′(st)
,

and for all j′ < j

Vs
j′(st) >

{
δt,j′ + θ′(st)

[
p′′(st)− ρlEt

[
Vs

j′(st+1)
]]

+ ρl(1− θ′(st))Et
[
Vs

j′(st+1)
]}

(1− α).

From the seller’s optimality condition, I obtain

Vs
j (st) ≥

{
δt,j + Θ(st, p′′(st))

[
p′′(st)− ρlEt

[
Vs

j (st+1)
]]

+ ρl(1−Θ(st, p′′(st))) ·Et
[
Vs

j (st+1)
]}

(1− α).

Since p′′(st) < p′(st), I get Θ(st, p′′(st)) < θ′(st). Again, by the single crossing
condition , all sellers with type j′ < j must strictly prefer θ′(st) with p′(st) to
the policy pair Θ(st, p′′(st)) with p′′(st). According to the equilibrium beliefs

67



condition, γj′(st, p′′(st)) = 0 for all j′ < j. Since I have

ρh ∑J
l=j γl(st), p′′(st)Et[vb

l (st+1)]

p′′(st)

≥
ρhEt[vb

j (st+1)]

p′′(st)

> λ(st),

buyers can achieve strictly higher value by deviating to the submarket p′′(st),
which is a contradiction to the buyers’ optimality condition. This completes
the proof.

Proof of Proposition 1

Proof. Suppose λ(st) < λ(st) < λ̄(st) for all st. From Lemma 1 to Lemma 8, I
have confirmed the existence and uniqueness of partial equilibrium on asset
market and the characterization stated in proposition 1. Now I deal with the
remaining cases where (i) λ(st) = λ̄(st) and (ii) λ(st) = λ(st) for some state
st.

For the case (i), notice that type 1 seller is indifferent between selling the
asset and keeping it to the next period. Let pj(st) for any j be the same with
the construction in Lemma 7. I define Θ(st, p) = ∞ if p < p1(st); Θ(st, p1(st))

be any number between [0, 1]; Θ(st, p) = Θ(st, p1(st)) ·
p1(st)−ρlEt[Vs

1 (st+1)]

p−ρlEt[Vs
1 (st+1)]

if

p ∈ [p1(st), p2(st)); and Θ(st, p) = 0 for all p ≥ p2(st). I remain the same con-
struction for Γ(st, p) as that in Lemma 7. Let F(st, p1(st)) = 1 and F(st, p) = 0
for all p 6= p1(st). Given these constructions, following the exact same proce-
dures as that in Lemma 6 and 7, I can define Vs

j (st) for all j.

Now I verify these objects are indeed a partial equilibrium on the asset
market. The equilibrium beliefs condition is immediate since for all types
j ≥ 2, the market tightness is 0 if p ≥ p2(st), which implies they are in-
different between all these markets. For markets p < p2(st), the condition
λ(st) = λ̄(st) suggests p1(st) = ρlEt[Vs

1 (st+1)] < ρlEt[Vs
j (st+1)]. Hence it is a

dominated policy for type j ≥ 2 sellers to show up on submarket p < p2(st).
The type 1 sellers are indifferent between all submarkets p ≥ p1(st) and are
strictly worse off in submarket p < p1(st). This proves the equilibrium beliefs
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condition. The seller’s optimality follows immediately after the equilibrium
beliefs condition. Notice that the only active market in this case is p1(st), and
obviously p1(st) solves the maximization problem on the right hand side of
(19). Other equilibrium conditions follow from the construction.

For the case (ii), I remain all the constructions in the Lemma 7 except that
I modify Θ(st, p1(st)) to be an arbitrary number greater than or equal to 1. I
can replicate the proof in Lemma 7 with no difficulty.

The final step is to prove that if Θ(st, p1(st)) < 1, which only happens
under the condition λ(st) = λ̄(st), then Θ(st, p1(st)) = 0 for all p ≥ p2(st).
Suppose that, for a contradiction, Θ(st, p) > 0 for some p ≥ p2(st). Let us
assume that p ∈ [pj(st), pj+1(st)) (by defining pJ+1(st) = ∞, this is without
lose of generality). By my construction of Θ(st, p), I have Θ(st, pj(st)) > 0.
Thus, from Lemma 8, I obtain that {pj(st), Θ(st, pj(st)), Vs

j (st)} is a solution to

problem Pj. Combining with the fact that p1(st) = ρlEt[Vs
1 (st+1)], constraint

(26) between type 1 seller and type j seller implies

Vs
1 (st) = (1− α)[δt,1 + p1(st)]

≥ (1− α)[δt,1 + min{Θj(st, pj(st)), 1}pj(st)] + (1−min{Θj(st, pj(st)), 1})p1(st).

It suggests ρlEt[Vs
1 (st+1)] = p1(st) ≥ pj(st) ≥ ρlEt[Vs

j (st+1)], which is a con-
tradiction to Lemma 1. This completes the proof.

Proof of Proposition 2

Proof. Let
(
{Vs

j (st)}j, Θ(st, p), Γ(st, p), F(st, p)
)

be a partial equilibrium asso-
ciated with function λ(st). Let

(
{Ṽs

j (st)}j, Θ̃(st, p), Γ̃(st, p), F̃(st, p)
)

be an-
other partial equilibrium associated with function λ̃(st). Given any state st

and j, assume that λ̄(st) > λ̃(st) > λ(st) > λ(st) and λ̄(s′t) > λ̃(s′t) = λ(s′t) >
λ(st) for all s′t 6= st.

I first prove that p̃j(st) < pj(st) for all j. The result comes directly from
the binding constraint (25) implied from Lemma 3 and the fact that θj(st) ≤ 1

69



according to the Lemma 4. I have

pj(st) =
ρhEt[vb

j (st+1)]

λ(st)

>
ρhEt[vb

j (st+1)]

λ̃(st)
= p̃j(st).

Now I prove that θj(st) ≥ θ̃j(st) for all j. According to the result in Lemma

4, θ1(st) = θ̃1(st) = 1. I prove that, for any state st, the function
θj+1(st)

θj(st)
is

increasing in λ(st). From the characterization in equation (49) and (50) proved
in Lemma 7, I can write

θj+1(st)

θj(st)
=

pj(st)− ρlEt[Vs
j (st+1)]

pj+1(st)− ρlEt[Vs
j (st+1)]

=
ρhEt[vb

j (st+1)]− ρlEt[Vs
j (st+1)] · λ(st)

ρhEt[vb
j+1(st+1)]− ρlEt[Vs

j (st+1)] · λ(st)
.

It is immediate that pj(st) and θj(st) are differentiable with respect to λ(st).

Therefore, it is sufficient to prove that d
dλ(st)

[
θj+1(st)

θj(st)
] ≥ 0. By a simple calcula-

tion and rearrangement, I can write this derivative as

d
dλ(st)

[
pj(st)−ρlEt[Vs

j (st+1)]
]

pj(st)−ρlEt[Vs
j (st+1)]

−
d

dλ(st)

[
pj+1(st)−ρlEt[Vs

j (st+1)]
]

pj+1(st)−ρlEt[Vs
j (st+1)][

pj+1(st)− ρlEt[Vs
j (st+1)]

]3[pj(st)− ρlEt[Vs
j (st+1)]

]
Since the denominator of the above inequality is positive, it is sufficient to
prove that

d
dλ(st)

pj(st)

pj(st)− ρlEt[Vs
j (st+1)]

≤
d

dλ(st)
pj+1(st)

pj+1(st)− ρlEt[Vs
j (st+1)]

,

and

d
dλ(st)

ρlEt[Vs
j (st+1)]

pj(st)− ρlEt[Vs
j (st+1)]

≤
d

dλ(st)
ρlEt[Vs

j (st+1)]

pj+1(st)− ρlEt[Vs
j (st+1)]

.

Notice that d
dλ(st)

log pj(st) = −1 by the equation (49). Substituting this into
the above inequalities and with a simple rearrangement, I obtain that both the
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two inequality are equivalent to pj+1(st) ≥ pj(st), which is true by the result
in Lemma 4. This completes the proof.
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C Partial Equilibrium on Repo Market

Proof of Proposition 3

Proof. Let’s fix a repo contract. The proof is a replication of the argument in
Morris and Shin (2001) proposition 3.1 (page 28). Let us consider the infor-
mation extraction problem of lender i who receives ui,t. Conditional on the
information structure in the model, lender i’s posterior distribution of µt is a

normal distribution with mean σ2·0+σ2
0 ui,t

σ2+σ2
0

and variance σ2σ2
0

σ2+σ2
0
. Let us denote

this mean as µ̃i and the variance as σ̃2
i . For convenience, suppose that lender

i believes all other lenders j follow a switching strategy at κ on their poste-
rior belief µ̃j. That is, the lender j will accept the repo contract if µ̃j > κ, and
choose the outside option otherwise. Thus, conditional on observing ui,t, the
expectation of the term SC( f ) is

E [SC( f )|κ, ui,t] =
∫

R
SC

(
1−Φ

(
(1 + σ2/σ2

0 )κ − µ

σ

))
dΦ

µ− µ̃i√
σ̃2

i



=
∫

R
SC

1−Φ

 (1 + σ2/σ2
0 )κ − x ·

√
σ̃2

i − µ̃i

σ

 · φ(x)dx,

where φ(x) is the density for the standard Normal distribution. Taking deriva-
tives with respect to κ and ui,t, I obtain

∫
R

SC′( f )

−φ

 (1 + σ2/σ2
0 )κ − x ·

√
σ̃2

i − µ̃i

σ

 ·(1 + σ2/σ2
0

σ

)
φ(x)dx

=
∂E[SC( f )|κ, ui,t]

∂κ
< 0 (53)

and

∫
R

SC′( f )

φ

 (1 + σ2/σ2
0 )κ − x ·

√
σ̃2

i − µ̃i

σ

 · 1
σ

(
σ2

0

σ2 + σ2
0

)
φ(x)dx

=
∂E[SC( f )|κ, ui,t]

∂ui,t
> 0. (54)

Notice that E(SC( f )|κ, ui,t) is continuously differentiable in κ and ui,t, strictly
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decreasing in κ and strictly increasing in ui,t. All other terms in V l are con-
stants conditional on the repo contract and st. It implies V l (st, R, (k j)j, κ, ui,t

)
is strictly decreasing in κ and strictly increasing in ui,t. Fix any state st. Let
us denote ξ

0
= −∞ and ξ̄0 = +∞. I argue by induction that any strat-

egy surviving n rounds of iterated deletion of (interim) strictly dominated
strategies satisfies the following condition: choosing repo contract if the pri-
vate utility is higher than ξ̄n · (1 + σ2/σ2

0 ) and choosing the outside option
if ui,t < ξn · (1 + σ2/σ2

0 ). Obviously, the condition is true for any strategy if
n = 0. Let us construct the sequence ξ̄n and ξn recursively as follows

ξn+1
=

σ2
0

σ2
0 + σ2

·max{x : V l(st, R, (k j)j, ξn, x) = 0},

ξ̄n+1 =
σ2

0

σ2
0 + σ2

·min{x : V l(st, R, (k j)j, ξ̄n, x) = 0}.

It is obvious that ξn and ξ̄n are well defined. I also observe that ξ̄n is decreasing
and ξn is increasing, which follows from the monotonicity of V l in uit and κ.
Now, suppose that the condition is true for n. Again from the monotonicity of
V l in ui,t, for an investor receiving ui,t < ξn+1

· (1 + σ2/σ2
0 ), I get

V l(st, R, (k j)j, ξn, ui,t) < 0.

This implies that choosing outside option is a dominated strategy for this in-
vestor. The argument is similar for the case that ui,t > ξ̄n+1. Thus, there exists
ξ̄ and ξ, defined as limits of ξ̄n and ξn when n goes to infinity, such that

V l(st, R, (k j)j, ξ̄,
σ2

0 + σ2

σ2
0
· ξ̄) = V l(st, R, (k j)j, ξ,

σ2
0 + σ2

σ2
0
· ξ) = 0.

Next I prove that, under the assumption 1, ξ̄ = ξ. To make the argument,

it is sufficient to show that Ṽ l(y) ≡ V l(st, R, (k j)j, y, σ2
0+σ2

σ2
0
· y) is strictly mono-

tone in y. Differentiating with respect to y and evaluating at κ = ui,t = y:

dṼ l(y)
dy

=
∫

R
ϕ ·
[

∂SC( f )
∂κ

+
σ2 + σ2

0

σ2
0
· ∂SC( f )

∂ui,t

]
dΦ(x) +

σ2 + σ2
0

σ2
0 (1− ρh(1− β))

=
∫

R

{
ϕ · SC′( f ) · φ(·)

(
− σ

σ2
0

)
+

σ2
0 + σ2

σ2
0 (1− ρh(1− β))

}
dΦ(x)
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Notice that φ(·) ≤ 1√
2π

. The condition in assumption 1 is sufficient to guar-

antee that the term in the script bracket is strictly positive. This implies Ṽ l(y)
is strictly increasing in y, hence ξ̄ = ξ. Thus, the only symmetric strategy that
survives the iterated elimination of dominated strategy is a switching strategy
κ∗(st, R∗, (k∗j )j) such that lenders will choose the repo contract if and only if

they observe the random utility ui,t larger than κ∗ · (1 + σ2

σ2
0
). The threshold κ∗

is defined by the implicit function

Ṽ l(κ∗) = 0.

This completes the proof.
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D Details for Computation and Simulation

D.1 Equilibrium Computation

This section describes the solution method.25 The model has several features
that make the computation of the equilibrium is a challenging task. First of all,
the dimension of the state space is high. As illustrated in previous sections, the
aggregate state in my model is four-dimensional: (Bt, Kt,1, Kt,2, δt,1). Secondly,
three of my four-state variables are continuous. Thirdly, unlike the typical
dynamic programming problem represented by the optimal growth model,
my problem is equivalent to a stochastic dynamic game among three forward-
looking players.

I employed the following strategy to address these issues. States are dis-
cretized with finite grid points. Values on the grid points are updated in
the value function iteration. I use linear interpolations and Gauss–Hermite
quadrature to calculate the off-grid expectations. And I utilize parallel com-
puting whenever is possible to speed up the convergence. Roughly speaking,
the algorithm is a modified Gaussian-Jacobi iteration. Unlike with a typical
contraction mapping problem, the algorithm is not guaranteed to converge
for an arbitrary initial guess. So the key to the success of computation is pro-
viding a good enough initial guess of the equilibrium. To get such a guess, I
have created a chain of auxiliary models such that each one simplifies the pre-
vious model in a certain direction. The chain connects my benchmark model
with a simple enough model that a solution is guaranteed. I solve the simplest
model first; use its solution as the initial guess for the next model and iterates
this procedure until the benchmark model is solved.

A similar technique is also used in the calibration. First, I start with a
guess of parameters and a solved equilibrium associated with it. Then, I sim-
ulate the model (with details discussed in the next subsection) and get a simu-
lated equilibrium path. Next, I update the guess of parameters by minimizing
the distance between the moment targets and the simulated moments calcu-
lated from the aforementioned simulated path. Finally, I solve the equilibrium
associated with the new parameters, using the equilibrium associated with the
old parameters as the initial guess. It is obvious that if the iteration converges,
I have obtained a local minimizer of the standard SMM objective function.

25The replication package, implemented with Julia, will be available soon on the author’s
website.
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In this section, I take parameter values as given and elaborate the equi-
librium solving algorithm. Notice that the state space X is continuous. The
first step is to discretize the relevant region (to my simulations) of the state
space. I consider 10× 100× 10× 10 grids. The δt,1 Markov process has a 10
points support. The state Bt is evenly gridded into 100 states between 0.15× B̄
and 0.6× B̄. For any j, the state for Kt,j is evenly gridded with 10 points be-

tween 0.2× θ̄j·Mj
α to

θ̄j·Mj
α . Equilibrium objects are updated on these grids in

the iteration and off-grids values are calculated by linear interpolation.

Consider an initial guess of the equilibrium(
R∗(st), NR∗(st), Et[Vs

j (st)], Et[vb
j (st)], Et[vl

j(st)], Et[vl
π(st)]

)
.

It is updated by the following iteration. The convergence criterion is 10−4.

if Convergence criterion passed then
End the iteration

else
for all st grids do

Get Cash(st) from R∗(st) and NR∗(st) by (11)
Solve λ(st), pj(st) and θj(st) from (49), (50) and (35)
Get cj(st) by (2)
Update R∗(st) and NR∗(st) by solving the problem in problem

1
Get T(st+1|st) from (18) and (22)

end for
Update value functions by (1), (5), (6) and (17)
Calculate the distance between the updated equilibrium objects

and the initial guess by sup norm
end if

The updating for value functions follow from the standard contraction
mapping method.

76



D.2 Parameter Calibration

The detailed simulation method is reported in section 6.1. This section elabo-
rates on how I implement the SMM for parameter calibration. Let P denote
the vector of parameters waiting for calibration.

P =
{

M1, M2, ρl, ν1, ..., ν4, η, ε, ϕ, σ0, σ
}

.

Except for η < 0, all parameters are constrained to be non-negative. In addi-
tion, I require ρl ∈ (0, ρh), and (ϕ, σ0, σ) jointly satisfy the assumption 1. Let
us denote the feasible field of parameters as C. Suppose the target moments
described in section 5.3 is Targett. Let Simt(P) be the simulated moments.
The objective function is

min
P

[Simt(P)− Targett]
′ [Simt(P)− Targett] + Penalty · 1P/∈C , (55)

where Penalty is a large enough constant. I use the Nelder-Mead method to
solve the above optimization problem. Take a initial guess P and its associated
equilibriumX (st), the calibration algorithm is the following. The convergence
criterion is 10−6.

if Convergence criterion passed then
End the iteration

else
1. Given P, solve the equilibrium policy functions and value func-

tions by method in appendix D.1 using X (st) as the initial guess
2. Generate the simulated path for st

3. Given st and value functions solved in 1, solve the optimization
problem 55 and obtain optimal parameters P′

4. Update X (st) by the equilibrium solved in 1
5. Measure the distance between P and P′

6. Update P by P′

end if
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E Equilibrium with Cash Reserve

Proof of Proposition 4

Proof. The proof is by guess and verify. In the statement of the proposition, I
have established a surjection T (s̄t) which defines any state s̄t a corresponding
state st in the state space of the benchmark model. There are three possibil-
ities: (1) cash reserve is unused as buyers have sufficient fund to fulfill ma-
turing repo liabilities; (2) cash reserve is sufficient to cover the shortfall and
is partially used; (3) cash reserve is completely exhausted but still, there are
some gaps. If case (1) occurs, the equilibrium outcome with the state s̄t is ob-
servational equivalent to that when the state is st. If case (2) happens, the cash
available (after applying cash reserves) for the buyer is simply 0. Case (3) is
similar.

Given an equilibrium of the benchmark model, denoted byX (st)26, a can-
didate equilibrium X ′(s̄t) for the model with cash reserve is well-defined by

X ′(s̄t) = X (T (s̄t)).

I verify the candidate equilibrium satisfies the functional equations deter-
mined by definition 3. Suppose the functional equation is denoted by

F(X (st)) = 0, for all st,

where F contains equations (19), (1), (23), (5), (6), (17), (33), (29), (35), (18),
and (22). Observe that CR(st) only shows up indirectly in F through the term
Cash. By construction of the surjection T (s̄t), I obtain that the available cash
for a buyer with state s̄t is the same with that of buyer with state T (s̄t) in the
benchmark model. Therefore, I have, for all s̄t,

F(X ′(s̄t)) = F(X (T (s̄t))) = 0.

This completes the proof.

26A tuple of functions
{
{Vs

j (st)}j, Θ(st, p), Γ(st, p), F∗(st, p), λ(st), κ∗(·),
(

R∗(st), (k∗j (st))j

)}
.
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